首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies addressing broad-scale species richness gradients have proposed two main primary drivers: contemporary climate and evolutionary processes (differential balance between speciation and extinction). Here, we analyze the global richness patterns of two venomous snake clades, Viperidae and Elapidae. We used ordinary least squares multiple regression (OLS) and partial regression analysis to investigate to what extent actual evapotranspiration (AET; summarizing current environmental conditions) and biogeographical regions (representing evolutionary effects) were associated with species richness. For viperids, AET explained 45.6% of the variance in richness whereas the effect of this variable for elapids was almost null (0.5%). On the other hand, biogeographic regions were the best predictors of elapid richness (56.5%), against its relatively small effect (25.9%) in viperid richness. Partial regressions also revealed similar patterns for independent effects of climate and history in both clades. However, the independent historical effect in Elapidae decreased from 45.2 to 17.8% when we excluded Australia from the analyses, indicating that the strong historical effect that had emerged for the global richness pattern was reflecting the historical process of elapid radiation into Australia. Even after excluding Australia, the historical signal in elapid richness in the rest of the globe was still significant and much higher than that observed in viperid richness at a global scale (2.7% after controlling for AET effects). Differences in the evolutionary age of these two clades can be invoked to explain these contrasting results, in that viperids probably had more time for diversification, generating richness responses to environmental gradients, whereas the pattern of distribution of elapid richness can be more directly interpreted in an evolutionary context. Moreover, these results show the importance of starting to adopt deconstructive approaches to species richness, since the driving factors of these patterns may vary from group to group according to their evolutionary history. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
We used eigenvector mapping in space and phylogeny to investigate the relationships among space, phylogeny and environment on body size and range size variation across two groups of venomous snakes – Viperidae and Elapidae – from the New World. Data on species geographic range sizes, maximum body sizes and phylogenetic relationships were compiled from the available literature. The distributional data were also used to calculate the latitudinal and longitudinal midpoint and the environmental centroids for each species. The eigenvectors extracted from the pair wise spatial and phylogenetic distance matrices were integrated with environmental variables into a method of variation partitioning where the variation in each trait was quantitatively attributed to ‘pure’ and/or shared effects of phylogeny, environment and space. Our results showed that variation in body size was predominantly determined by phylogeny in both groups of snakes. For Viperidae, we found that pure ‘effects’ of phylogeny were the strongest, indicating that most of the body size evolution that was phylogenetically determined in this group occurred independently of environment and geographical proximity. Regarding range sizes, pure phylogenetic influences were very low in both groups, whereas the largest single fraction of explained variation corresponded to overlapped influences of the three sets of predictors, especially for Elapidae. Along with this, we found evidence that niche conservatism is an important processes underlying variation in body size and range size in both groups of snakes.  相似文献   

3.
Ecology and signal evolution in lizards   总被引:1,自引:0,他引:1  
Current models of signal evolution explain diversity by invoking a variety of social, perceptual and environmental factors. Social systems and spacing patterns determine the active space of signals and their function. Receiver sensory systems and habitat characteristics interact to constrain signal design. These factors are traditionally implicated in promoting directional evolutionary change, leading to increases or decreases in signal complexity. We examine macro-evolutionary trends in signal design, as reflected by display modifier repertoire size, for 124 species of iguanian lizards to identify the importance of ecological factors in display evolution. Possessing a small home range, being arboreal and feeding on moving prey are all correlated with the evolution of large repertoires. However, living in closed habitats is associated with increased evolutionary change in repertoire size, producing greater signal diversity. Ecological factors can thus act either directionally or to promote evolutionary lability.   © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 127–148.  相似文献   

4.
Aim  To document geographical interspecific patterns of body size of European and North American squamate reptile assemblages and explore the relationship between body size patterns and environmental gradients.
Location  North America and western Europe.
Methods  We processed distribution maps for native species of squamate reptiles to document interspecific spatial variation of body size at a grain size of 110 × 110 km. We also examined seven environmental variables linked to four hypotheses possibly influencing body size gradients. We used simple and multiple regression, evaluated using information theory, to identify the set of models best supported by the data.
Results  Europe is characterized by clear latitudinal trends in body size, whereas geographical variation in body size in North America is complex. There is a consistent association of mean body size with measures of ambient energy in both regions, although lizards increase in size northwards whereas snakes show the opposite pattern. Our best models accounted for almost 60% of the variation in body size of lizards and snakes within Europe, but the proportions of variance explained in North America were less than 20%.
Main conclusions  Although body size influences the energy balance of thermoregulating ectotherms, inconsistent biogeographical patterns and contrasting associations with energy in lizards and snakes suggest that no single mechanism can explain variation of reptile body size in the northern temperate zone.  相似文献   

5.
The structure of body size and shape divergence among populations of Poecilia vivipara inhabiting quaternary lagoons in South-eastern Brazil was studied. This species is abundant throughout an environmental gradient formed by water salinity differences. The salinity gradient influences the habitat structure (presence of macrophytes) and the fish community (presence of large predators). Size and shape variation within and among populations was quantified by geometric morphometrics and analysed by indirect and direct gradient ordinations, using salinity and geography as a framework. Morphological divergence was associated with the salinity gradient. The evolutionary allometries observed were independent of within-group static allometries. Sexually dimorphic patterns were observed in size variation and within-population allometries. Specimens from freshwater (higher predation) sites presented smaller sizes, relatively longer caudal regions, lower anterior regions and a ventrally displaced eye. These features are consistent with an ecomorphological paradigm for aquatic organisms from populations subject to intense predation. A process of directional selection is postulated as the most likely force driving diversification among P. vivipara populations.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 799–812.  相似文献   

6.
Competition for resources (e.g. mates or food) is the main evolutionary explanation for conspicuous ornaments in males, although this idea is not generalized in females. Whether or not the expression of melanic coloration is dependent on environmental conditions remains controversial. We studied three different melanin-based female traits in the Eurasian kestrel Falco tinnunculus , a sexually dichromatic species, for a period of 10 years: grey coloration in rump and tail and the width of the black subterminal tail band. We analysed these traits for within-individual variation among years, as well as their possible link with indices of quality, such as age, body size, and breeding performance. The results obtained demonstrate that female melanin-based coloration increased from yearlings to adults. In addition, the expression of female rump coloration covaried positively with the environmental conditions in the previous year (i.e. measured as clutch size at population level). Finally, we found a positive correlation between grey rump coloration and clutch size. These results suggest that the expression of rump coloration, a melanin-based trait, is environmentally constrained, and we propose that this character could function as an indicator of individual quality in female Eurasian kestrels.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 781–790.  相似文献   

7.
Male genitalia evolve through sexual selection and, in insects, tend to show negative static allometry, low phenotypic variation, and are usually relatively small. Much less is known about the genetic variation and heritability of male genitalia. Additionally, in instances where the intromittent organ is greatly elongated, it is unclear whether typical patterns of genital scaling and variation also apply. In the present study, we investigated the allometry, variation, and heritability of male genital length in the seedbug, Lygaeus equestris , a species with a greatly elongated intromittent organ (i.e. almost as long as male body size). We found that genital length was negatively allometric, in spite of its great length, and was no more variable than nongenital traits. Additionally, genital length was significantly heritable and had considerable evolvability.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 400–405.  相似文献   

8.
Species in which individuals experience predictable and uniform environments should be most finely adapted to their environment. Many hydrozoan species in the genus Hydractinia simultaneously occupy similar microhabitats (gastropod shells inhabited by hermit crabs) but experience considerable differences in their immediate environment (size and species of shells and hosts). In the present study, hydroid species experience differences in environmental predictability and traits that mediate competitive ability (growth form and growth rate). The inferred competitive ability was directly proportional to the extent to which the gastropod environment promotes interactions between small, juvenile colonies, which always end in competitive elimination. Extensive intraspecific variation in competitive ability was explained primarily by crab host species or site. Dense host populations impose more severe disturbance regimes that favour competitively inferior, but disturbance-resistant, phenotypes. Interplay between different types of variation (gastropods and hermit crabs) provides a possible mechanism for the maintenance of intraspecific growth form variation.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 322–338.  相似文献   

9.
Understanding the processes underlying morphological diversification is a central goal in ecology and evolutionary biology and requires the integration of information about phylogenetic divergence and ecological niche diversity. In the present study, we use geometric morphometrics and comparative methods to investigate morphological diversification in Neotropical spiny rats of the family Echimyidae. Morphological diversification is studied as shape variation in the skull, comprising a structure composed of four distinct units: vault, base, orognathofacial complex, and mandible. We demonstrate association among patterns of variation in shape in different cranial units, levels of phylogenetic divergence, and ecological niche diversification. At the lower level of phylogenetic divergence, there is significant and positive concordance between patterns of phylogenetic divergence and cranial shape variation in all cranial units. This concordance may be attributable to the phylogenetic and shape distances being calculated between species that occupy the same niche. At higher phylogenetic levels of divergence and with ecological niche diversity, there is significant concordance between shape variation in all four cranial units and the ecological niches. In particular, the orognathofacial complex revealed the most significant association between shape variation and ecological niche diversity. This association may be explained by the great functional importance of the orognathofacial complex.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 646–660.  相似文献   

10.
Body size is highly variable within and among populations, both as a result of genetic variation and as a plastic response to environmental variation. From a proximate perspective, body size depends upon cell size, cell number, and extracellular matrix, but we know little about their independent contributions to size nor how these contributions vary with environmental influences. Here, I introduce the tail muscle of anuran tadpoles as a new system for studying this issue. Body size and tail size of tadpoles is sensitive to variation in food and temperature. I show first that tail muscle size is strongly correlated with overall body size, thus making it a good tissue to study size regulation. Second, the relative role of cell size and cell number, but not extracellular matrix, shows an interaction between food and temperature treatments and across ages. For example, in young tadpoles food effects on size are due exclusively to cell size at low temperatures but both cell size and number at high temperatures. This pattern partially reverses for older tadpoles. Despite the complexity of this interaction, the two populations compared show nearly identical patterns, suggesting that the plastic response is robust.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 499–510.  相似文献   

11.
This study aimed to identify potential factors responsible for geographically structured morphological variation within the widespread Australian frogs Limnodynastes tasmaniensis Günther and L. peronii Duméril & Bibron. There was support for James's rule, and both latitude and present climate explained large amounts of the variation in body size and shape (particularly in L. peronii ). There was also some support for the influence of several biogeographical barriers. Finally, both species were sexually dimorphic for body size and the degree of sexual size dimorphism (SSD) varied geographically. Climate was an important explanation for SSD variation in L. peronii , while latitude was most important for L. tasmaniensis . Geographical variations in sexual selection via male–male physical competition and climate-related resources are suggested as potential explanations for SSD variation in L. peronii .  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 39–56.  相似文献   

12.
Patterns of sexual size dimorphism (SSD) and cranial dimorphism are well documented. However, limited examinations exist of the contrasts in the patterns and nature of dimorphism across body regions (e.g. cranium, pelvis), particularly when these regions have different sex-specific functions (e.g. display in mating, locomotion, and reproduction). Using landmark-based morphometric techniques, we investigated size and shape dimorphism variation in the crania and pelves of two closely-related fox species within the genus Urocyon . Although we found no significant size and shape dimorphism in the crania of either species, we did find significant dimorphism in the pelvis: its size was dimorphic in Urocyon littoralis (but not in Urocyon cinereoargenteus ) and its shape was dimorphic in both species (though more pronounced in U. littoralis ). The observation of greater dimorphism in the pelvis than in the cranium suggests that factors such as offspring size and locomotor mode play a greater role in sexual dimorphism than simple 'whole body' allometric affects associated with dimorphism in body size.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 339–353.  相似文献   

13.
Males of the lizard Podarcis melisellensis occur in three distinct colours that differ in bite performance, with orange males biting harder than white or yellow ones. Differences in bite force among colour morphs are best explained by differences in head height, suggesting underlying variation in cranial shape and/or the size of the jaw adductors. To explore this issue further, we examined variation in cranial shape, using geometric morphometric techniques. Additionally, we quantified differences in jaw adductor muscle mass. No significant differences in size corrected head shape were found, although some shape trends could be detected between the colour morphs. Orange males have relatively larger jaw adductors than yellow males. Not only the mass of the external jaw adductors, but also that of the internal jaw adductors was greater for the orange morph. Data for other cranial muscles not related to biting suggest that this is not the consequence of an overall increase in robustness in orange individuals. These results suggest that differences in bite performance among morphs are caused specifically by an increase in the mass of the jaw adductor, which may be induced by differences in circulating hormone levels.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 13–22.  相似文献   

14.
Body size is evolutionarily constrained, but the influence of phylogenetic relationships on global body size (i.e. body mass) gradients is unexplored. We quantify and map the family‐level phylogenetic and non‐phylogenetic structure of the global gradient of birds, evaluating the extent to which it is influenced by phylogenetic inertia in contrast to heat conservation, resource availability, starvation resistance, niche conservatism, or interspecific competition. Phylogenetic eigenvector regression (PVR) partitioned the global bird body size gradient into phylogenetically autocorrelated (PA) and phylogenetically independent (PI) components. Simple, piecewise, and partial regressions were used to investigate associations between the PA and PI components of body size and environmental correlates, and to quantify independent and overlapping contributions of environment, phylogenetic autocorrelation, and species richness to the body size gradient. Two‐thirds of the geographic variation in bird body size can be explained by phylogenetic relationships at the family level. The global variation in body size, independent of phylogenetic relationships, is most strongly associated with net primary productivity, which is consistent with ‘starvation resistance’. However, the New and Old worlds have very different patterns. We found no independent association of species richness with body size. Despite major unresolved regional differences, deep phylogenetic relationships, heat conservation, and starvation resistance probably operate in concert in shaping the global bird body size gradient in different parts of the world. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

15.
Patterns of intraspecific geographic variation in morphology and behaviour, when examined in a phylogenetic context, can provide insight into the microevolutionary processes driving population divergence and ultimately speciation. In the present study, we quantified behavioural and phenotypic variation among populations from genetically divergent regions in the Central American treefrog, Dendropsophus ebraccatus . Our fine-scale population comparisons demonstrated regional divergence in body size, colour pattern frequencies, and male advertisement call. None of the characters covaried with phylogenetic history or geographic proximity among sampled populations, indicating the importance of highly localized selection pressures and genetic drift in shaping character divergence among isolated regions. The study underscores how multiple phenotypic characters can evolve independently across relatively small spatial scales.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 298–313.  相似文献   

16.
Sexual dimorphism has implications for a range of biological and ecological factors, and intersexual morphological differences within a species provide an ideal opportunity for investigating evolutionary influences on phenotypic variation. We investigated sexual size dimorphism (SSD) in an agamid species, Rankinia [Tympanocryptis] diemensis , to determine whether overall size and/or relative morphological trait size differences exist and whether geographic variation in size dimorphism occurs in this species. Relative morphological trait proportions included a range of head, limb, and inter-limb measurements. We found significant overall intersexual adult size differences; females were the larger sex across all sites but the degree of dimorphism between the sexes did not differ between sites. This female-biased size difference is atypical for agamid lizards, which are usually characterized by large male body size. In this species, large female-biased SSD appears to have evolved as a result of fecundity advantages. The size of relative morphological trait also differed significantly between the sexes, but in the opposite direction: relative head, tail, and limb sizes were significantly larger in males than females. This corresponds to patterns in trait size usually found in this taxonomic group, where male head and limb size is important in contest success such as male–male rivalry. There were site-specific morphological differences in hatchlings, including overall body size, tail, inter-limb, thigh, and hindlimb lengths; however, there were no sex-specific differences indicating the body size differences present in the adult form occur during ontogeny.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 699–709.  相似文献   

17.
Recently, it has been proposed that adult mortality schedules may be responsible for latitudinal patterns of life history variation in passerine birds, whereas nest predation only could explain within latitude patterns. Unfortunately, no independent test has been performed regarding the importance of nest predation with different taxa. In the present study, seasonality and nest predation hypotheses explaining variations in gestation time and litter size in 17 lagomorph species were tested. Among latitude patterns were analysed using the phylogenetic independent contrast method of Felsenstein and within latitude patterns were analysed by the pairwise comparative method. The results obtained indicate that latitudinal patterns observed in both variables are explained by different factors: seasonality for litter size and nest predation for gestation time. Litter size variations within latitudes are also explained by differences in nest predation, supporting previous hypotheses. In conclusion, the present study suggests that, when compared among latitudes, different life history traits (e.g. litter size and gestation time) may be shaped by different selective forces and that the effects of nest predation may be high both within and between latitudes.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 603–610.  相似文献   

18.
Evolutionary trends in body size have been identified within several lineages, but not all have followed Cope's rule, which states that average body size within a taxon tends to increase over time. In organisms such as parasites, space constraints may have shaped the evolution of body sizes, favouring small-bodied taxa capable of exploiting new niches. Here, the average adult body sizes of families in three groups of parasitic flatworms, the Digenea and two clades of Monogenea (Monopisthocotylea and Polyopisthocotylea), are related to their clade rank. Clade rank reflects the number of branching events, and thus the total path length, between an extant family and the root of the phylogenetic tree. Among families of Digenea, all of which are endoparasites of vertebrates, there was no trend in body size evolution. In contrast, the Monopisthocotylea and Polyopisthocotylea, which are (with the exception of Polystomatidae and Sphyranuridae) ectoparasites of fish, revealed significant negative relationships between family body size and clade rank, suggesting an evolutionary trend of decreasing size. In addition, an analysis of body size distributions in monogenean families also provides support, albeit weak, for this trend. From an ancestor parasitic on the skin of fishes, monogeneans have diversified by colonizing other microhabitats on their hosts, including such space-limited sites as the gaps between secondary gill lamellae. Using a conservative likelihood ratio test, however, a random walk, or null model of evolution could not be discarded in favour of the directional trends mentioned above. Nevertheless, these results suggest that body size has taken different evolutionary paths in endo- and ectoparasitic flatworms.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 181–189.  相似文献   

19.
The patterns of local endemism in New Caledonia were analysed in two endemic genera of Tingidae (Insecta, Heteroptera), Cephalidiosus and Nobarnus , through a phylogenetic analysis and species' distribution modelling. The aim was to determine the possible causes of diversification and endemism in New Caledonia. Our results show that environmental conditions are probably important for the distribution of the genus Cephalidiosus , in conjunction with other factors such as resource (host plant) distribution, but suggest that the same environmental conditions have not influenced the speciation processes and diversification in the genus.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 177–184.  相似文献   

20.
Frequency distributions of dental morphotype characters (groups of morphotypes from A to S) in 43 red fox Vulpes vulpes (Linnaeus, 1758) populations from the Holarctic region were analysed. Definite but different geographical gradients in morphotype dental patterns were found both in the Palearctic and Nearctic. In the Nearctic, a great number of characters present geographical gradient related to longitude whereas, in the Palearctic, gradient relates to latitude. Mean annual temperature and mean annual sum of precipitations play a significant role in shaping the geographical variation of morphotype characters. The shape of the teeth in the centre of the morphogenetic field is more heavily geo-climatically conditioned than the morphotype characters in the teeth at the ends of the cheek teeth field. There was an attempt to reconstruct the evolutionary changes in the morphotype dental pattern in the V. vulpes line. The morphotype pattern in the red fox dentition partially follows the phylogeographical evolutionary trends in Canidae in the northern hemisphere. However, the picture of morphotype variation is influenced by both earlier episodes of human interference (reintroductions of foxes in North America) and the recent phenomenon of heavy opportunism of the species.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 61–84.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号