首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Cultured Thalictrum rugosum cells were immobilized using a glass fiber substratum previously shown to provide optimum immobilization efficiency based on spontaneous adhesion mechanisms. When cultivated in shake flasks, immobilized cells exhibited decreased growth and protoberberine alkaloid production rates in comparison to freely suspended cells. Since alkaloid production is growth associated in T. rugosum, the decreased specific production rate was a function of the slower growth rate. Cells immobilized on glass fiber mats appear to be amenable for extended culture periods. Maximum biomass and protoberberine alkaloid levels were maintained for at least 14 days in immobilized cultures. In contrast, fresh weight, dry weight, and total alkaloid content decreased in suspension cultures following the linear growth phase.Glass fiber mats were incorporated in to a 4.5-L plant cell bioreactor as horizontal disks supported on a central rod. Mixing in the reactor was provided by the combined actions of a magnetic impeller and a cylindrical sparging colum. fThe magnetic impeller and a cylindrical sparging column. The entire inoculum biomass of T. rougosum, introduced as suspension, was spontaneously immobilized with in 8h. During liner phase, the growth rate of bioreactor cultivated immobilized cells (mu = 0.06 day(-1)) was 50% that immobilized cell viability in both systems was determined to be similar. The increase in specific production of protoberberine alklodis was initially similar in bioreactor-and culture period. The increase in specific production of protoberberine alkaloids was initially similar in bioreactor-and shake-flask-cultivated immobilized cells. However, the maximum specific production of bioreactor grown cultures was lower. The scale up potential of an immobilization strategy based on the spontaneous adhesion of immobilization strategy based on the spontaneous adhesion of cultured plant cells to glass fiber is demonstrated.  相似文献   

2.
Fast-growing hairy root cultures of Hyoscyamus muticus induced by Agrobacterium rhizogenes offer a potential production system for tropane alkaloids. Oxygen deficiency has been shown to limit growth and biomass accumulation of hairy roots, whereas little experimental data is available on the effect of oxygen on alkaloid production. We have investigated the effect of Vitreoscilla hemoglobin (VHb) expression and cultivation conditions on the complete alkaloid profile of H. muticus hairy roots in shake flasks and in a laboratory scale bioreactor. We optimized the growth medium composition and studied the effects of sucrose, ammonium, nitrate, and phosphate on growth and alkaloid production. Maximum biomass accumulation was achieved with the highest and maximum hyoscyamine content with the lowest sucrose concentration. The optimum nitrate concentration for growth was higher for the VHb line than the control. Neither VHb expression nor aeration improved the hyoscyamine content significantly, thus suggesting that hyoscyamine biosynthesis is not limited by oxygen availability. Interestingly, the effect of VHb expression on the alkaloid profile was slightly different from that of aeration. VHb expression did not affect the concentrations of cuscohygrine, which was increased by aeration. Therefore, the effect of VHb is probably not related only to its ability to increase the intracellular effective oxygen concentration.  相似文献   

3.
A novel bubble free loop fluidized bed reactor for plant cell cultures was developed and tested usingCoffea arabica as a model cell line. The effects of main operational parameters like morphology and size of inoculum, oxygen supply as well as recirculation of sparingly soluble gases on cell growth and alkaloid production rates in this reactor were studied and the results were compared with standard shake flask experiments. By on-line monitoring of biomass and oxygen uptake rates the main kinetic parameters for cell growth and alkaloid production were evaluated. It was demonstrated that the novel reactor is easy to run and is particularly adequate for measuring kinetic parameters necessary for scale up.  相似文献   

4.
Papaver somniferum (opium poppy) cells were immobilized in calcium alginate, where they continued to live with their biological activity for 6 months. The immobilized living cells performed the biotransformation of (?)-codeinone to (?)-codeine in both a shake flask and a column bioreactor. The biotransformation ratio in the shake flask (70.4%) was higher than that in the cell suspension (60.8%). Furthermore, 88% of the codeine converted was excreted in the medium. The column bioreactor was functional for 30 days under optimal conditions (20°, 3.75 vvm in aeration), whereas the ratio was 41.9%.  相似文献   

5.
Two processes for the production of indole alkaloids 2 l surface-immobilized bioreactor cultures of Catharanthus roseus cells using Zenk's Alkaloid Production Medium (APM) were evaluated. The 1-stage process consisted of inoculating APM containing bioreactors and incubating for 15 d. The 2-stage process involved inoculating growth medium-containing bioreactors, growing the immobilized cultures for a certain period of time and subsequently replacing this medium with APM. The production stage which lasted for 15 d. High production in 2-stage cultures required the replacement of the growth regulator 2,4-dichlorophenoxyacetic acid by indole-3-acetic acid in the growth medium and a growth stage of 6 d (late exponential phase) before production initiation. Growth, main nutrient consumption and alkaloid production were monitored. Both culture regimes resulted in similar biomass production, dw (10-13 g l-1). The 2-stage cultures yielded biomass richer in organic nutrients (200-300%) and with higher respiratory activity (approximately 250%), indicated by their lower biomass-to-carbohydrate yields (31% and 26%), as compared to 1-stage cultures (41%). Two-stage cultures produced more known products (10 as compared to 6) at yields (5 to 4800 micrograms g-1) 3 to 5 times higher than 1-stage cultures. More alkaloids were alkaloids released in the medium of 2-stage cultures, under non-lysing conditions, (20 to 4700 micrograms l-1) than in 1-stage cultures (20 to 460 micrograms l-1). These results were compared to those obtained from shake flask cultures performed at the same time, with the same C. roseus cell line and under similar regimes and reported previously. Suspension and immobilized cultures performed according to the 1-stage regime showed similar total production. However, release of known alkaloids was 2 to 3 times higher in immobilized than in suspension cultures. Total alkaloid production of 2-stage suspension cultures was 3.8-fold higher than 2-stage immobilized cultures. Two stage immobilized cultures released 4 more known alkaloids than the 2-stage suspensions. Lower oxygen availability in the 2 l immobilized cultures may explain lower specific growth rates (0.15-0.22 d-1) and total alkaloid production levels, compared to 200 ml suspension cultures (0.2-0.4 d-1) reported in our previous paper.  相似文献   

6.
Oxygen and nutrient limitation was investigated in order to identify the origin of a lower specific ajmalicine production in Catharanthus roseus cultures at high cell densities in an induction medium. The effect of oxygen limitation was explored by comparing two identically aerated and agitated high cell density bioreactor cultures with dissolved oxygen (DO) concentration of 15% and 85% of air saturation, with respect to alkaloid formation and related enzymes activities. Oxygen had an evident effect on ajmalicine production: in the high DO cultures production was more than 5 times higher than in the low DO cultures. The difference in ajmalicine production between high and low DO could not be explained by the enzyme activity profiles. Moreover, the productivity in the high density culture could not restored to the level of a low density culture (at a high DO) by increasing the DO alone. The effect of nutrient limitation was studied with response surface methodology in shake flask cultures. Nutrient limitation could not be demonstrated to be responsible for the productivity loss. Alkaloid and enzyme measurements in the shake flask cultures supported previous findings that the tryptamine pathway may regulate alkaloid production, provided that the terpenoid pathway is sufficiently active. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
The cell growth and alkaloid production of Catharanthus roseus (L.) G. Don cells cultured in the shake flasks with different volumes and in the stirred tank bioreactor (10 L) were compared. Cell dry weight and alkaloid production showed no significant difference in the small volume scale-up shake flasks. When more broths were added to a certain volume in the shake flask, both cell weight and alkaloid production were decreased. The maximum cell dry weight was similar between the cell cultures in the shake flask and the bioreactor, but the alkaloid production of cells was much less in the bioreactor. Gas regime and shear stress were recognized to be the main factors contributing the important effect on alkaloid production during the scale-up processes.  相似文献   

8.
An immobilized growing cell system was applied to the continuous L -isoleucine production by Serratia marcescens. In the new immobilized-cell systems using the carrageenan gel method. S. marcescens cells in the gel required nutrients and oxygen for growth, and the numbers of living cells per milliliter of gel increased to the levels of that of free cells in the liquid medium. This immobilized growing cell system exhibited high and stable activity for isoleucine production under steady-state conditions. Continuous isoleucine production was carried out by feeding the nutrient medium under aeration into a fluidized bed reactor containing the immobilized cells. In the continuous operation, an efficient production was maintained by automatically controlling the pH of the reaction mixture at 7.5. The productivity of isoleucine increased using multibed reactors. In a two-bed reactor system, the effluent L -isoleucine concentration reached 4.5 mg/ml at a retention time of 10 hr, and a steady state was maintained for longer than 30 days.  相似文献   

9.
The productivity of a cell culture for the production of a secondary metabolite is defined by three factors: specific growth rate, specific product formation rate, and biomass concentration during production. The effect of scaling-up from shake flask to bioreactor on growth and production and the effect of increasing the biomass concentration were investigated for the production of ajmalicine by Catharanthus roseus cell suspensions. Growth of biomass was not affected by the type of culture vessel. Growth, carbohydrate storage, glucose and oxygen consumption, and the carbon dioxide production could be predicted rather well by a structured model with the internal phosphate and the external glucose concentration as the controlling factors. The production of ajmalicine on production medium in a shake flask was not reproduced in a bioreactor. The production could be restored by creating a gas regime in the bioreactor comparable to that in a shake flask. Increasing the biomass concentration both in a shake flask and in a stirred fermenter decreased the ajmalicine production rate. This effect could be removed partly by controlling the oxygen concentration in the more dense culture at 85% air saturation.  相似文献   

10.
The effects of various factors in culture medium on the phenolics production from cultured tobacco cells (free and immobilized) were studied. It was found that removing the growth hormone from the medium increased the productivities of phenolics for both free and immobilized cultures. Low initial sucrose concentration in the medium restricted growth and resulted in high cellular productivities of the phenolics for freely suspended cells, but not for the immobilized cells. Addition of 1.4% DMSO to standard culture medium greatly increased phenolics productivities without affecting cell viability in both free and immobilized cell cultures. Continuous operation of a packed-column reactor of the immobilized cells was achieved for 500 hours. Aeration was accomplished by diffusing pure oxygen through silicone tubing placed inside the reactor. It was found that prolonged cell viability was contingent upon initially operating the reactor with total recycle for several days, and then introducing fresh feed while maintaining a high recycle rate. Immobilized cells packed in a continuous column reactor achieved productivities more than twice that achieved in any batch run.  相似文献   

11.
Shake-flask cultures are widely used for screening of high producing strains. To select suitable strains for production scale, cultivation parameters should be applied that provide optimal growth conditions. A novel method of measuring respiratory activity in shake-flask cultures was employed to analyze Escherichia coli fermentation under laboratory conditions. Our results suggest that the length of fermentation, choice of medium, and aeration do not normally satisfy the requirements for unlimited growth in shake flasks. Using glycerol rather than glucose as a carbon source greatly reduced the accumulation of overflow and fermentative metabolites when oxygen supply was unlimited. A rich buffered medium, Terrific Broth (TB), yielded 5 times more biomass compared to LB medium but also caused oxygen limitation in standard shake-flask cultures at shaking frequencies below 400 rpm. These results were used to optimize the production of benzoylformate decarboxylase from Pseudomonas putida in E. coli SG13009, resulting in a 10-fold increase in volumetric enzyme production. This example demonstrates how variation of medium composition and oxygen supply can be evaluated by the measurement of the respiratory activity. This can help to efficiently optimize screening conditions for E. coli.  相似文献   

12.
Ferrous iron oxidation by Thiobacillus ferrooxidans was studied in shake flasks and a bubble column under different aeration conditions. The maximum biooxidation rate constant was affected by oxygen transfer only at low aeration intensities. At oxygen transfer rates higher than 0.03 mmol O2 l−1 min−1, the maximum biooxidation rate constant was about 0.050 h−1 in both shake flasks of different size and the bubble column. The oxygen transfer rate could be used as a basis for scaling up bioreactors for ferrous iron biooxidation by T. ferrooxidans.  相似文献   

13.
Several fungal strains ofAspergillus andPenicillium were immobilized by cryopolymerization in polyvinyl alcohol cryogel beads.Aspergillus clavatus was the best producer of extracellular ribonuclease. Enzyme productivity and growth of free and immobilized cells in shake flasks and agitated bioreactor were studied. Ribonuclease production and growth behaviour depended on concentrations of glucose, peptone and soybean in the culture medium. Enzyme production was influenced by agitation and aeration intensity. In repeated batch, shake-flask cultures, the immobilized cells showed 2 to 3.5 times higher enzyme activity than free cells. The optimal conditions in a bioreactor were at 150 rev/min agitation speed and 0.5 vol/vol.min aeration. Enzyme productivity of immobilized cells (237 units/g dry mycelium.h) was 2.1 times higher than the productivity of free cells in a bioreactor, and 2.3 times higher than that of a shake-flask culture.R.J. Manolov is with the Institute of Microbiology, Department of Enzymes, Bulgarian Academy of Sciences, Georgy Bonchev Street 26, 1113 Sofia, Bulgaria.  相似文献   

14.
The effect of scaleup on he production of ajmalicine by a Catharanthus roseus cell suspension culture in a selected induction medium were studied. In preliminary experiments it was observed that the culture turned brown and the production was inhibited upon transfer from a shake flask to a stirred bioreactor with forced aeration. Two factors were recognized as the potential origin of the differences between shake flask and bioreactor cultures: gas composition and mechanical shear forces. These factors were studied separately.By recirculating a large part of the exhaust gas, a comparable gas regime was obtained in a bioreactor as occurred in a shake flask cultures. This resulted in the absence of browning and a similar pattern of ajmalicine production as observed in shake flasks. The effect of shear forces could not be demonstrated. However, the experiments showed that the culture may be very sensitive to liquid phase concentrations of gaseous compounds. The effects of k(L)a, aeration rate, CO(2) production rate, and influent gas phase CO(2) concentration on the liquid phase CO(2) concentration are discussed. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
Summary The influence of inorganic phosphate and immobilization on cells of Claviceps purpurea strain 1029/N5 producing ergot peptides in shake culture was examined. Immobilization in Ca-alginate beads resulted in a marked reduction of some metabolic activities, i.e. the periods of alkaloid formation and cell growth were prolonged. High concentrations of inorganic phosphate (1 g/l KH2PO4) could reduce or stop alkaloid formation both by free and immobilized cells at any time during fermentation. The optimum phosphate concentration for alkaloid production by immobilized cells (about 0.5 mM) was a quarter of that required by free cells. This optimum shift was attributed to (i) the diminished phosphate demand of immobilized cells, due to their reduced metabolic activities, and (ii) the phosphate-dependent morphological behaviour of the biocatalyst. The observed decrease in alkaloid concentrations during later periods of the fermentation supported the idea of alkaloid-degradative enzymes, activated by high phosphate concentrations. Immobilization showed an advantageous influence on this undesirable effect. Offprint requests to: H.J. Rehm  相似文献   

16.
The effect of aeration level and iron concentration on Azotobacter chroococcum 23 growth, PHB accumulation and antioxidative enzyme activities was investigated in shake flask experiments. Biomass yield and carbon source conversation coefficients increased in the presence of iron in the growth medium and under decreased aeration. The highest biomass production was observed for the culture grown in a medium with 36 μM of initial iron concentration and moderate aeration level. The highest PHB accumulation level (70–72% from cell dry weight) under our experimental conditions was observed at decreased aeration in the growth medium with 180 μM of initial iron concentration. Results obtained prove that both aeration level and iron supply have a marked influence on the activity of SOD and catalase. Bearing in mind the necessity of iron for the synthesis of both enzymes, only catalase showed a specific dependence on the intracellular iron accumulation level.  相似文献   

17.
NaCS-PDMDAAC生物微胶囊囊膜较为致密,影响胶囊内外物质的交换,从而影响胶囊内细胞的生长。利用淀粉酶对致孔剂淀粉的降解作用制备了一种大孔型的纤维素硫酸钠_聚二甲基二烯丙基氯化铵(NaCS-PDMDAAC)生物微胶囊,实验表明胶囊的孔径和通透性能都有了很大的提高。将酵母和大肠杆菌作为模型细胞包埋于胶囊中分别通过摇瓶和鼓泡塔半连续培养,在鼓泡塔中胶囊内细胞的密度要高于摇床,表明氧气的传递是胶囊内好氧细胞生长的限制因素,大孔胶囊由于囊膜孔径变大,氧气的传递更为快速,在鼓泡塔中大孔型胶囊内的最大细胞密度比常规胶囊要高出20%~110%。由于对氧气的需求量的不同,大肠杆菌菌浓提高的程度要高于酵母。  相似文献   

18.
Aims: To evaluate the effect of different physicochemical parameters such as agitation, aeration and pH on the growth and nitrile hydratase production by Rhodococcus erythropolis MTCC 1526 in a stirred tank reactor. Methods and Results: Rhodococcus erythropolis MTCC 1526 was grown in 7‐l reactor at different agitation, aeration and controlled pH. The optimum conditions for batch cultivation in the reactor were an agitation rate of 200 rev min?1, aeration 0·5 v/v/m at controlled pH 8. In this condition, the increase in nitrile hydratase activity was almost threefold compared to that in the shake flask. Conclusion: Agitation and aeration rate affected the dissolved‐oxygen concentration in the reactor which in turn affected the growth and enzyme production. Significance and Impact of the Study: Cultivation of R. erythropolis MTCC 1526 in the reactor was found to have significant effect on the growth and nitrile hydratase production when compared to the shake flask.  相似文献   

19.
The processes for production of indole alkaloids in shake flask suspension cultures of Catharanthus roseus cells using Zenk's alkaloid production medium (APM) were evaluated. The 1-stage process consisted of inoculating APM and incubating for 15 days. The 2-stage process involved 6 d of cultivation in growth medium followed by 15 d of incubation in APM. Growth, main nutrient consumption and alkaloid production were monitored. Both culture processes produced approximately 20 g dw per 1 biomass. However, 2-stage cultures yielded an inorganic nutrient richer and more active plant cell biomass, richer in inorganic nutrients, as indicated by higher (greater than 70%) nutrient availability and consumption. Total and individual indole alkaloid production were 10 times higher (740 mg l-1 and 25 to 4000 micrograms per g dw, respectively) for 2-stage than for 1-stage cultures. For both processes, highest alkaloid productivity coincided with complete extracellular consumption of major inorganic nutrients, especially nitrate, by the cells. Complete carbohydrate consumption in 2-stage cultures resulted in a 40% decline in production. Small but significant (approximately 10%) product release was observed for both culture regimes, which seemed not to be related to cell lysis.  相似文献   

20.
Abstract

Yarrowia lipolytica was used to produce γ-decalactone by the degradation of methyl ricinoleate (MR). A new method for inoculating the biotransformation medium was tested, which avoided the laborious step of washing cells from the growth medium. The consequent cell hydrophobicity increase led to an enhancement of aroma production. In a study of MR concentration in shake flasks, the highest productivity (15 mg L?1 h?1) was achieved using 30 g MR L?1. Lipase and protease activities were induced but no correlation between lipase induction and aroma production was found. The effects of different aeration and agitation rates were studied in bioreactor assays. Productivity was improved to 87 mg L?1 h?1, and another compound, 3-hydroxy-γ-decalactone, was detected in large amounts. Dehydration of this lactone produced two decenolides with aroma characteristics. The direct influence of oxygen on the production of both lactones was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号