首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was recently shown that in some subjects capsaicin can evoke bitterness as well as burning and stinging, particularly in the circumvallate (CV) region of the tongue. Because perception of bitterness from capsaicin is characterized by large individual differences, the main goal of the present study was to learn whether people who taste capsaicin as bitter also report bitterness from structurally similar sensory irritants that are known to stimulate capsaicin-sensitive neurons. The irritancy and taste of capsaicin and two of its most commonly studied congeners, piperine and zingerone, were measured in individuals who had been screened for visibility of, and reliable access to, the CV papillae. Approximately half of these individuals reported tasting bitterness from all three irritants when the stimuli were swabbed directly onto the CV papillae. Concentrations that produced similar levels of burning sensation across subjects also produced similar (though lower) levels of bitter taste. These results are consistent with the hypothesis that capsaicin and its congeners stimulate bitterness via a common sensory receptor that is distributed differentially among individuals. Additionally, bitter tasters rated gustatory qualities (but not burning and stinging) slightly but significantly higher than did bitter non-tasters, which suggests that perception of capsaicin bitterness is associated with a higher overall taste responsiveness (but not chemesthetic responsiveness) in the CV region.  相似文献   

2.
The aim of this study was to investigate the relationship offungiform papillae density with taste detection thresholds forsucrose of young male adults. One hundred and eighty two subjectsaged 18–23 years (mean age: 21.9 ± 1.2 years) wereincluded. The densities of fungiform papillae were recordedwith the aid of the digital camera, and the taste detectionthresholds for sucrose were detected using a modified forced-choicetriangle test. The mean density of papillae within all 170 statisticparticipants was 92.43 ± 2.64/cm2, for the 6-mm-diameterstained section of the tongue tip. The average detection thresholdwas 10.83 ± 0.24 mmol/l, and the highest and lowest detectionthresholds were 19.88 ± 1.31 and 5.85 ± 0.43 mmol/l,respectively. Also, an inverse correlation between the fungiformpapillae density and the detection threshold was observed.  相似文献   

3.
The effect of consumption of bitter taste substances (caffeine and beer) to bitter taste sensitivity was examined by 19 healthy adults. For individual taste sensitivity, detection thresholds were used on 6 bitter substances (caffeine, iso-alpha-acids: beer bittering agents, quinine sulfate, L-tryptophan, L-phenylalanine and glycyl-L-phenylalanyl-L-phenylalanine) and 3 non-bitter substances (L-aspartic acid, aspartame and NaCl). Nonusers of caffeine had significantly higher sensitivity (lower threshold) for caffeine compared to moderate and heavy users. Slight consumers of beer had significantly higher sensitivity for iso-alpha-acids relative to heavy users of beer, Iso-alpha-acids were not detected in saliva in acute dosing test by using 6 subjects. The correlations between thresholds of 6 bitter substances were calculated. Significant correlations (p < 0.01) were noted in 2 cases between caffeine and quinine, and iso-alpha-acids and L-trypothan. These data suggest the significant relation between individual bitter taste sensitivity and the consumption of caffeine and beer (iso-alpha-acids).  相似文献   

4.
Type III IP3 receptor (IP3R3) is one of the common critical calcium-signaling molecules for sweet, umami, and bitter signal transduction in taste cells, and the total IP3R3-expressing cell population represents all cells mediating these taste modalities in the taste buds. Although gustducin, a taste cell-specific G-protein, is also involved in sweet, umami, and bitter signal transduction, the expression of gustducin is restricted to different subsets of IP3R3-expressing cells by location in the tongue. Based on the expression patterns of gustducin and taste receptors in the tongue, the function of gustducin has been implicated primarily in bitter taste in the circumvallate (CV) papillae and in sweet taste in the fungiform (FF) papillae. However, in the soft palate (SP), the expression pattern of gustducin remains unclear and little is known about its function. In the present paper, the expression patterns of gustducin and IP3R3 in taste buds of the SP and tongue papillae in the rat were examined by double-color whole-mount immunohistochemistry. Gustducin was expressed in almost all (96.7%) IP3R3-expressing cells in taste buds of the SP, whereas gustducin-positive cells were 42.4% and 60.1% of IP3R3-expressing cells in FF and CV, respectively. Our data suggest that gustducin is involved in signal transduction of all the tastes of sweet, umami, and bitter in the SP, in contrast to its limited function in the tongue.  相似文献   

5.
Lim J  Green BG 《Chemical senses》2008,33(2):137-143
Taste is always accompanied by tactile stimulation, but little is known about how touch interacts with taste. One exception is evidence that taste can be "referred" to nearby tactile stimulation. It was recently found (Lim J, and Green BG. 2007. The psychophysical relationship between bitter taste and burning sensation: evidence of qualitative similarity. Chem Senses. 32:31-39) that spatial discrimination of taste was poorer for bitterness than for other tastes when the perceived intensities were matched. We hypothesized that this difference may have been caused by greater referral of bitterness by touch. The present study tested this hypothesis by comparing localization of quinine sulfate and sucrose under conditions that minimized and maximized the opportunity for referral. In both conditions, stimulation was produced by 5 cotton swabs spaced 1 cm apart and arranged in an arc to enable simultaneous contact with the front edge of the tongue. Only one swab contained the taste stimulus, whereas the rest were saturated with deionized water. In both conditions, the swabs were stroked up-and-down against the tongue 5 times. Subjects were asked to identify which swab contained the taste stimulus 1) 5 s after the fifth stroke (touch-removed condition) and 2) immediately at the end of the fifth stroke, with the swabs still in contact with the tongue (touch-maintained condition). Ratings of taste intensity were obtained to assess the possible effect of perceived intensity on spatial localization. Taste localization was surprisingly accurate, especially for sucrose, with errors of localization in the range of 1 cm or less. For both stimuli, localization tended to be poorer when the tactile stimulus was present while subjects made their judgments, but the difference between conditions was significant only for the lower concentration of quinine. The results are discussed in terms of both the surprisingly good spatial acuity of taste and the possibility of having a close perceptual relationship between touch and bitter taste.  相似文献   

6.
In a psychophysical study with human subjects, three chloridesalts and three acids were tasted at two different isointenseconcentrations. Subjects profiled the taste sensations elicitedwhen the stimuli were applied to small regions of the anteriortongue and to individual circumvallate papillae. The resultsextended earlier findings showing systematic differences inthe responses to acids and salts as a function of the locusto which a stimulus is applied. All salts were perceived aspredominantly salty on the anterior tongue, and as predominantlysour or bitter on circumvallate papillae, although there wasa weak salty component in the response to lower concentrationsof salt on circumvallate papillae. Acids were perceived as souron circumvallate papillae, and as sour and salty on the anteriortongue. Cationic atomic weight was positively related to saltinesson both loci. However, while salts apparently stimulate bothbitter and sour receptors on both the anterior tongue and circumvallatepapillae, there was no systematic relationship between cationicatomic weight and the magnitude of the sour and bitter tasteselicited. It was concluded that the possibility of unequal distributionsof receptor types between fungiform and circumvallate regionsshould be taken into account when interpreting the results ofexperiments using whole-mouth stimulation with salts and acids. 1This experiment was submitted as part of a dissertation bythe first author in partial fulfillment of the degree of Doctorof Philosophy at Brandeis University. The interpretations inthis paper are not to be construed as an official Departmentof the Army policy or position. 2Current address: Science and Advanced Technology Laboratory,US Army Natick Research and Development Laboratories, Natick,MA 01760.  相似文献   

7.
Differences between elderly subjects (n = 46, 61-86 years) and young subjects (n = 36, 18-25 years) in food perception and food liking were investigated. Intensity and liking ratings were assessed for custard dessert, in which flavor enrichment, textural change, and irritant addition were incorporated as strategies to compensate for sensory losses with increasing age. The sensory acuity (taste, olfaction, irritation, chewing efficiency) of both young and elderly subjects was measured with the help of different sensitivity tests. The elderly perceived the custards differently from the young, mainly as less intense in flavor (cherry/vanilla) and less intense in creaminess/swallowing effort. Several of the observed interaction effects were different for the elderly and the young. The majority of these differences manifested as lower intensity slopes for the elderly. Losses in sensitivity to taste and to olfactory and trigeminal stimuli as well as a reduced chewing efficiency were observed on average for the elderly compared with the young. Furthermore, subgroups of the elderly were observed in which the compensatory strategies flavor enrichment, textural change, and irritant addition led to an increase in food liking. However, these subgroups did not differ in their sensory acuity. The present study does not support the assumption that age-associated changes in food perception-caused by losses in sensory acuity-inevitably reduce the food liking of the elderly.  相似文献   

8.
The hedonic dimension of the taste sensation plays a crucial role in the control of many taste-mediated responses related to food ingestion or rejection. The purpose of this study was to evaluate the emotional reactivity associated with each primary taste (sweet, salty, sour and bitter) through analysis of the variations of autonomic nervous system (ANS) parameters. Thirty-four healthy non-smoker volunteer subjects (17 males and 17 females, mean age = 28 years) participated in the experiment. Taste stimuli were solutions of 0.3 M sucrose (sweet), 0.15 M NaCl (salty), 0.02 M citric acid (sour) and 0.00015 M quinine sulfate (bitter). Evian mineral water was used as the diluent and control (neutral taste). Throughout the test, five ANS parameters (skin potential and skin resistance, skin blood flow and skin temperature, and instantaneous heart rate) were simultaneously and continuously recorded. Results of the ANOVA evidenced a significant effect of primary taste on skin resistance amplitude (P: < 0.001) and duration (P: < 0.0001), skin temperature amplitude (P: < 0.001), skin blood flow amplitude (vasoconstriction) (P: < 0.0001) and instantaneous heart rate increase (P: < 0.0001). Skin resistance and cardiac responses were the most relevant ANS parameters to distinguish among the taste solutions. The four primary tastes could be associated with significantly different ANS responses in relation to their hedonic valence: the pleasantly connoted and innate-accepted sweet taste induced the weakest ANS responses whereas the unpleasant connoted tastes (salty, sour and bitter) induced stronger ANS responses, the innate-rejected bitter taste inducing the strongest ones. Such a neurovegetative characterization of each primary taste could provide references for the hedonic analysis of the more complex gustative sensation attached to foods.  相似文献   

9.
Hayes JE  Duffy VB 《Chemical senses》2007,32(3):225-236
Genetic variation in oral sensation presumably influences ingestive behaviors through sensations arising from foods and beverages. Here, we investigated the influence of taste phenotype [6-n-propylthiouracil (PROP) bitterness, fungiform papillae (FP) density] on sweet and creamy sensations from sugar/fat mixtures. Seventy-nine subjects (43 males) reported the sweetness and creaminess of water or milk (skim, whole, heavy cream) varying in sucrose (0-20% w/v) on the general Labeled Magnitude Scale. Sweetness grew with sucrose concentration and when shifting from water to milk mixtures--the growth was greatest for those tasting PROP as most bitter. At higher sucrose levels, increasing fat blunted the PROP-sweet relationship, whereas at lower levels, the relationship was effectively eliminated. Perceived sweetness of the mixture exceeded that predicted from the sum of components at low sucrose concentrations (especially for those tasting PROP most bitter) but fell below predicted at high concentrations, irrespective of fat level. Creaminess increased greatly with fat level and somewhat with sucrose. Those tasting PROP most bitter perceived greater creaminess in the heavy cream across all sucrose levels. Perceived creaminess was somewhat lower than predicted, irrespective of PROP bitterness. The FP density generally showed similar effects as PROP on sweetness and creaminess, (but to a lesser degree) and revealed potential taste-somatosensory interactions in weakly sweet stimuli. These data support that taste phenotype affects the nature of enhancement or suppression of sweetness and creaminess in liquid fat/sugar mixtures. Taste phenotype effects on sweetness and creaminess likely involve differential taste, retronasal olfactory, and somatosensory contributions to these perceptual experiences.  相似文献   

10.
The time course of structural changes in fungiform papillae was analyzed in rats that received unilateral chorda tympani nerve transection at 10 days of age. Morphological differences between intact and denervated sides of the tongue were first observed at 8 days postsection, with an increase in the number of fungiform papillae that did not have a pore. In addition, the first papilla with a filiform-like appearance was noted on the denervated side at 8 days postsectioning. By 11 days after surgery, the total number of papillae and the number of papillae with a pore were significantly lower on the transected side of the tongue as compared to the intact side. At 50 days postsection, there was an average of 70.5 fungiform papillae on the intact side and a mean of only 20.8 fungiform papillae the denervated side. Of those few remaining papillae on the cut side, an average of 13.5 papillae were categorized as filiform-like, while no filiform-like papillae occurred on the intact side. Significant reduction in taste bud volume was noted at 4 days posttransection and further decrements in taste bud volume were noted at 8 and 30 days postsection. Electron microscopy of the lingual branch of the trigeminal nerve from adult rats that received neonatal chorda tympani transection showed normal numbers of both myelinated and unmyelinated fibers. Thus, in addition to the well-characterized dependence of taste bud maintenance on the chorda tympani nerve, the present study shows an additional role of the chorda tympani nerve in papilla maintenance during early postnatal development.  相似文献   

11.
Chorda tympani nerve transection (CTX) results in morphological changes to fungiform papillae and associated taste buds. When transection occurs during neonatal development in the rat, the effects on fungiform taste bud and papillae structure are markedly more severe than observed following a comparable surgery in the adult rat. The present study examined the potential "sensitive period" for morphological modifications to tongue epithelium following CTX. Rats received unilateral transection at 65, 30, 25, 20, 15, 10, or 5 days of age. With each descending age at the time of transection, the effects on the structural integrity of fungiform papillae were more severe. Significant losses in total number of taste buds and filiform-like papillae were observed when transection occurred 5-30 days of age. Significant reduction in the number of taste pores was indicated at every age of transection. Another group of rats received chorda tympani transection at 10, 25, or 65 days of age to determine if the time course of taste bud degeneration differed depending on the age of the rat at the time of transection. Taste bud volumes differed significantly from intact sides of the tongue at 2, 8, and 50 days post-transection after CTX at 65 days of age. Volume measurements did not differ 2 days post-transection after CTX at 10 or 25 days of age, but were significantly reduced at the other time points. Findings demonstrate a transitional period throughout development wherein fungiform papillae are highly dependent upon the chorda tympani for maintenance of morphological integrity.  相似文献   

12.
Objectives: This investigation aimed to demonstrate age‐related changes of taste buds on the human epiglottis using histomorphometrical analysis. Methods: Histological observation and measurement of taste bud density were performed on oral and laryngeal surfaces of 237 human epiglottises (138 male and 99 females). The cases were divided into two age groups: 67 cases in the younger group, for subjects aged 10–39 years and 170 cases in the older group, for those aged 70–98 years. Each epiglottis was investigated at the upper and middle height levels. Results: The mean density of taste buds significantly decreased on the laryngeal surfaces in the older group. Most taste buds were present in the upper height level on the laryngeal surfaces which were covered with thin and flat stratified squamous epithelium. The covering epithelium revealed developed epithelial ridges on the oral surfaces without taste buds. These results suggest a relationship between the existence of taste buds and the thickness of the covering epithelium. Conclusions: The presence of taste buds in the epiglottises of elderly people was demonstrated. In addition, the decrease of these taste buds with advancing age was clarified.  相似文献   

13.
Taste and smell have a primary role in food ingestion. Therefore, to understand why eating habits alter in elderly people, age-related differences in the chemical senses should be investigated. In early anatomical studies, substantial decreases in numbers of taste buds in old human and mouse circumvallate papillae were observed. However, recent investigations in humans, monkeys, and rats indicate that there is not a significant loss of taste buds in old age. Neurophysiological recordings from the chorda tympani nerve, innervating taste buds in fungiform papillae, demonstrate significant but small differences in response magnitudes for some chemicals in old rats. Greater age-related differences have been observed in the olfactory sense. Numbers of receptor neurons in the rat olfactory epithelium initially increase in adults and then decline in old animals; this decline is reflected in subsequent changes in the olfactory bulb. However, numbers of synapses in the bulb per receptor neuron are increased in the oldest rats, suggesting some compensatory mechanism. Differences in degree of aging effects in taste and smell might relate to the nature of receptors: a modified epithelial cell in taste versus a neuron in smell. However, in both sensory systems, large numbers of receptors remain even in old age. Since taste bud cells and olfactory receptors turn over and are replaced throughout life, the peripheral taste and smell systems might be relatively resistant to aging effects.  相似文献   

14.
The sense of taste plays an important role in the evaluation of the nutrient composition of consumed food. Bitter taste in particular is believed to serve a warning function against the ingestion of poisonous substances. In the past years enormous progress was made in the characterization of bitter taste receptors, including their gene expression patterns, pharmacological features and presumed physiological roles in gustatory as well as in non-gustatory tissues. However, due to a lack in TAS2R-specifc antibodies the localization of receptor proteins within gustatory tissues has never been analyzed. In the present study we have screened a panel of commercially available antisera raised against human bitter taste receptors by immunocytochemical experiments. One of these antisera was found to be highly specific for the human bitter taste receptor TAS2R38. We further demonstrate that this antibody is able to detect heterologously expressed TAS2R38 protein on Western blots. The antiserum is, however, not able to interfere significantly with TAS2R38 function in cell based calcium imaging analyses. Most importantly, we were able to demonstrate the presence of TAS2R38 protein in human gustatory papillae. Using double immunofluorescence we show that TAS2R38-positive cells form a subpopulation of PLCbeta2 expressing cells. On a subcellular level the localization of this bitter taste receptor is neither restricted to the cell surface nor particularly enriched at the level of the microvilli protruding into the pore region of the taste buds, but rather evenly distributed over the entire cell body.  相似文献   

15.
Nomura  Hiromichi 《Chemical senses》1978,3(3):319-324
Adenylate cyclase and cyclic AMP phosphodiesterase activitieson the foliate papillae of rabbit were studied by means of histochemistry.In unfixed papillae the reaction product for adenylate cyclaseactivity was localized in the apex of taste buds, lamina proprioand connective tissue core of the papillae, but in fixed papillaeit was limited to the apex of taste buds. The reaction productfor cyclic AMP phosphodiesterase activity was limited to theapex of taste buds in unfixed and fixed papillae. Neither anacceleratory nor an inhibitory effect of sweet and bitter substanceson the adenylate cyclase and cyclic AMP phosphodiesterase activitieswas demonstrated, but NaCl prevented the formation of reactionproduct for the adenylate cyclase activity at the apex of tastebuds.  相似文献   

16.
冯平  罗瑞健 《遗传》2018,40(2):126-134
在鲜味、甜味、苦味、咸味和酸味5种味觉形式中,苦味能避免动物摄入有毒有害物质,在动物的生存中发挥着特别重要的作用。苦味味觉的产生依赖于苦味物质与苦味受体的相互作用。苦味受体由苦味受体基因Tas2rs编码,此类基因在不同物种中数量变化较大以适应不同的需求。目前的研究在灵长类中鉴别出了若干苦味受体的配体,并发现有的苦味受体基因所经受的选择压在类群之间、基因之间甚至同一基因不同功能区之间都存在着变化。本文从苦味受体作用的多样性特点,受体与配体的对应关系、受体基因进化模式与食性之间的关系、苦味受体基因的适应性进化方面对灵长类苦味受体基因进行了综述,以期为苦味受体基因在灵长类中的深入研究提供参考。  相似文献   

17.
The rationale for investigating the gustatory reactivity as influenced by personality dimensions was suggested by some prior findings of an association between extraversion and acuity in other sensory systems. Detection thresholds for sweet, salty, and bitter qualities of taste were measured in 60 young healthy male and female volunteers using a two-alternative forced-choice technique. Personality of the responders was assessed using the Eysenck Personality Inventory. Multivariate analysis of variance failed to demonstrate a statistically significant interaction between an extraversion-introversion score, neuroticism score, smoking, gender and age. The only reliable negative association was found between the body mass index (BMI) and taste sensitivity (Roy's largest root = 0.05, F(7436.5) = 8.34, P = 0.003). Possible reasons for lack of differences between introverts and extraverts in the values of taste detection thresholds were discussed.  相似文献   

18.
Miller  Inglis J.  Jr; Reedy  Frank E.  Jr 《Chemical senses》1990,15(3):281-294
A method developed to quantify taste buds in living human subjectsto study the relationship between taste sensitivity and tastebud distribution was used to count the taste buds in 10 humansubjects; fungiform papillae were mapped in 12 subjects. Tastebuds were identified by staining taste pores with methyleneblue, and images of the papillae and their taste pores wereobtained with videomicroscopy and an image processor. Fungiformpapillae showed a 3.3-fold range in density, from 22.1 to 73.6papillae/cm2 with an average of 41.1 ± 16.8/cm2 (s.d.,n = 2). There was a 14-fold range in taste pore density, from36 to 511 pores/cm2 among subjects, with an average of 193 ±133/cm2 (s.d., n = 10). Fungiform papillae contained from 0to 22 taste pores, with an average per subject of 3.75 ±1.4 taste pores/papilla (s.d., n = 10). We hypothesize thatsome differences in human taste sensitivity may be related tothese variations in taste bud density.  相似文献   

19.
We examined co-localization of vanilloid receptor (VR1) with sweet receptors T1R2, T1R3, or bitter receptor T2R6 in taste receptor cells of rat circumvallate papillae. Tissue sections of rat circumvallate papillae were doubly reacted with anti-VR1 antibodies and anti-T1R2, anti-T1R3 or anti-T2R6 antibodies, using double-immunofluorescence histochemistry technique. Localizations of VR1, T1Rs and T2R6 in the vallate taste cells containing α-gustducin were also examined. VR1 immunoreactivities (-ir) were observed in subsets of taste cells in the circumvallate papillae, and 96–99% of the vallate taste cells exhibiting T1R2-, T1R3- or T2R6-ir co-exhibited VR1-ir. Approximately half of T2R6-ir cells (~49%), and 50–58% of T1Rs-ir cells, co-exhibited α-gustducin-ir in the vallate taste buds. About 58% of VR1-ir cells in the vallate exhibited α-gustducin-ir as well. Results support the idea that capsaicin may interact with the transduction pathways of sweet and bitter taste stimuli, possibly in mediation of its receptor VR1 localized in taste receptor cells. Additionally, the partial co-localization of α-gustducin with VR1 suggests that a tentative modulatory function of capsaicin in sweet and bitter transductions in the rat circumvallate comprises of both α-gustducin-mediated and non-mediated transduction pathways.  相似文献   

20.
The structure of precursors to fungiform papillae without taste buds, prior to the arrival of sensory nerve fibers at the papillae, was examined in the fetal rat on embryonic day 13 (E13) and 16 (E16) by light and transmission electron microscopy in an attempt to clarify the mechanism of morphogenesis of these papillae. At E13, a row of rudiments of fungiform papillae was arranged along both sides of the median sulcus of the lingual dorsal surface, and each row consisted of about 10 rudiments. There was no apparent direct contact between papillae rudiments and sensory nerves at this time. Bilaterally towards the lateral side of the tongue, adjacent to these first rudiments of fungiform papillae, a series of cord-like invaginations of the dorsal epithelium of the tongue into the underlying connective tissue, representing additional papillary primordia parallel to the first row, was observed. The basal end of each invagination was enlarged as a round bulge, indented at its tip by a mound of fibroblasts protruding into the bulge. At E16 there was still no apparent direct contact between rudiments of fungiform papillae and sensory nerves. Each rudiment apically contained a spherical core of aggregating cells, which consisted of a dense assembly of large, oval cells unlike those in other areas of the lingual dorsal epithelium. The differentiation of these aggregated cells was unclear. The basal lamina was clearly recognizable between the epithelium of the rudiment of fungiform papillae and the underlying connective tissue. Spherical structures, which appeared to be sections of the cord-like invaginations of the lingual epithelium that appeared on E13, were observed within the connective tissue separated from the dorsal lingual epithelium. Transverse sections of such structures revealed four concentric layers of cells: a central core, an inner shell, an outer shell, and a layer of large cells. Bundles of fibers were arranged in the central core, and the diameters of bundles varied somewhat depending on the depth of the primordia within the connective tissue and their distance from the median sulcus. Ultrastructural features of cells in the outer shell differed significantly in rudiments close to the lingual epithelium as compared to those in deeper areas of connective tissue. Around the outer shell there was a large-cell layer consisting of one to three layers of radially elongated, oval cells that contained many variously sized, electron-dense, round granules. Large numbers of fibroblasts formed dense aggregates around each spherical rudiment, and were separated by the basal lamina from the large-cell epithelial layer. Progressing from deep-lying levels of the rudiments of the papillae to levels close to the lingual surface epithelium, the central core, inner shell, and outer shell gradually disappeared from the invaginated papillary cords.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号