首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the kinetics and molecular properties of CD38 purified from bovine lung microsomal membranes after its solubilization with Triton X-100. The enzyme was found to be a novel member of a multicatalytic NAD+-glycohydrolase (NADase, EC 3.2.2.6). It was able to utilize NAD + in different ways, producing nicotinamide (Nam) and either adenosine diphosphoribose (ADPR, NADase activity) or cyclic ADPR (cADPR, cyclase activity); it also catalyzed the hydrolysis of cADPR to ADPR (cADPR, hydrolase activity). In addition, the enzyme catalyzed the pyridine base exchange reaction with conversion of NAD + into NAD analogues. These data are evidence that CD38 is involved in the regulation of both NAD+ and calcium-mobilizing agents, the concentration resulting in an essential enzyme that plays a key role in cellular energy and signal-transduction systems.  相似文献   

2.
Zhang L  Xu X  Luo Z  Shen D  Wu H 《Biochimie》2009,91(2):240-251
NAD-glycohydrolases (NADases) are ubiquitous enzymes that possess NAD glycohydrolase, ADPR cyclase or cADPR hydrolase activity. All these activities are attributed to the NADase-catalyzed cleavage of C-N glycosyl bond. AA-NADase purified from the venom of Agkistrodon acutus is different from the known NADases, for it consists of two chains linked with disulfide-bond(s) and contains one Cu(2+) ion. Here, we show that AA-NADase is not only able to cleave the C-N glycosyl bond of NAD to produce ADPR and nicotinamide, but also able to cleave the phosphoanhydride linkages of ATP, ADP and AMP-PNP to yield AMP. AA-NADase selectively cleaves the P-O-P bond of ATP, ADP and AMP-PNP without the cleavage of P-O-P bond of NAD. The hydrolysis reactions of NAD, ATP and ADP catalyzed by AA-NADase are mutually competitive. ATP is the excellent substrate for AA-NADase with the highest specificity constant k(cat)/K(m) of 293+/-7mM(-1)s(-1). AA-NADase catalyzes the hydrolysis of ATP to produce AMP with an intermediate ADP. AA-NADase binds with one AMP with high affinity determined by isothermal titration calorimetry (ITC). AMP is an efficient inhibitor against NAD. AA-NADase has so far been identified as the first unique multicatalytic enzyme with both NADase and AT(D)Pase-like activities.  相似文献   

3.
The catabolic pathway of nicotinamide adenin dinucleotide (NAD) in cultured pheochromocytoma rat cells (PC12) was investigated. The first evidence obtained in these studies was that, despite inducing cell differentiation, NGF treatment did not modify NAD catabolism. Following incubation of PC12 homogenate with NAD, ADP-ribose, AMP, IMP, and HYP was produced. The catabolic fate of AMP and ADPR so obtained was followed by monitoring to a final production of inosine and hypoxanthine through several enzymatic steps. When intact PC12 cells were incubated with NAD in the culture medium AMP, IMP and HYP were found but, no ADPR and cADPR were present in the growth medium. "Nucleotides analyses" carried out on the homogenate obtained from these cells, confirmed the absence of cADPR and an increase of intracellular ADPR. These results led us to believe that in PC12 cells the ADP ribosyl cyclase activity is absent and that NADase is an ecto-enzyme able to transfer the ADPR, produced from NAD catabolism, inside the cells.  相似文献   

4.
An egg-specific NADase has been purified to homogeneity from the ovotestis of the opisthobranch mollusk Aplysia californica. Unlike other NADases, the Aplysia enzyme generates primarily cyclic-ADP-ribose (cADPR) rather than ADP-ribose from NAD. cADPR has been shown to stimulate the release of Ca2+ from microsomes prepared from sea urchin egg and, when injected into intact eggs, to activate the cortical reaction, multiple nuclear cycles, and DNA synthesis. The Aplysia enzyme was initially identified as an inhibitor of cholera and pertussis toxin-catalyzed ADP-ribosylation. By the use of an NADase assay, it was purified from the aqueous-soluble fraction of ovotestis by sequential column chromatography. The enzyme has an apparent molecular mass of 29 kDa, a Km for NAD of 0.7 mM, and a turnover rate of approximately 27,000 mol NAD.min-1.mol enzyme-1 at 30 degrees C. Monoclonal antibodies were generated to the NADase. Immunoblots of two-dimensional gels revealed multiple isoforms of the enzyme, with pls ranging from 8.1 to 9.8. The multiple isoforms were resolved with a cation exchange high-pressure liquid chromatography column and shown to generate cADPR. Immunohistochemical analysis of cryostat sections of Aplysia ovotestis shows that the enzyme is specific to the eggs and restricted to large 5- to 10-microns granules or vesicles. To date the cADPR-generating enzyme activity has been identified in various organisms, including mammals. The Aplysia enzyme is the first example in which the enzyme that generates cADPR has been purified. All of the available evidence indicates that this NADase is a second-messenger enzyme, implying that other NADases may serve a similar function.  相似文献   

5.
TRPM2 (transient receptor potential melastatin 2) is a Ca2+-permeable cation channel gated by ADPR (ADP-ribose) from the cytosolic side. To test whether endogenous concentrations of intracellular ADPR are sufficient for TRPM2 gating in neutrophil granulocytes, we devised an HPLC method to determine ADPR contents in HClO4 cell extracts. The reversed-phase ion-pair HPLC method with an Mg2+-containing isocratic eluent allows baseline resolution of one ADPR peak. Intracellular ADPR concentrations were approx. 5 muM in granulocytes and not significantly altered by stimulation with the chemoattractant peptide fMLP (N-formylmethionyl-leucylphenylalanine). We furthermore determined intracellular concentrations of cADPR (cyclic ADPR) with a cyclase assay involving enzymatic conversion of cADPR into NAD+ and fluorimetric determination of NAD+. Intracellular cADPR concentrations were approx. 0.2 microM and not altered by fMLP. In patch-clamp experiments, ADPR (0.1-100 microM) was dialysed into granulocytes to analyse its effects on whole-cell currents characteristic for TRPM2, in the presence of a low (<10 nM) or a high (1 microM) intracellular Ca2+ concentration. TRPM2 currents were significantly larger at high than at low [Ca2+] (e.g. -225+/-27.1 versus -7+/-2.0 pA/pF at 5 muM ADPR), but no currents at all were observed in the absence of ADPR (ADPR concentration < or =0.3 microM). cADPR (0.1, 0.3 and 10 microM) was without effect even in the presence of subthreshold ADPR (0.1 microM). We conclude that ADPR enables an effective regulation of TRPM2 by cytosolic Ca2+. Thus ADPR and Ca2+ in concert behave as a messenger system for agonist-induced influx of Ca2+ through TRPM2 in granulocytes.  相似文献   

6.
The NAD glycohydrolase (NADase) (EC 3.2.2.5) from Bungarus fasciatus (banded krait) venom was purified (1000-fold) to electrophoretic homogeneity through a 3-step purification procedure, the last step being affinity chromatography on Cibacron blue agarose. The purified NADase is a glycoprotein containing two subunits of Mr = 62,000 each. Nicotinamide and adenosine diphosphoribose were produced in a 1:1 stoichiometry and were the only products formed when the purified NADase was incubated with NAD. These results were confirmed by high performance liquid chromatography. The enzyme exhibited a brod pH profile with optimum pH for hydrolysis at 7.5 with very little change in Km from pH 6.0 to pH 8.5. The NADase is only slightly affected by changes in ionic strength. The enzyme studied titrimetrically at pH 7.5 and 38 degrees C exhibited a Km of 14 microM and a Vmax of 1380 mumol of NAD cleaved/min/mg of protein. The activation energy for the enzyme-catalyzed hydrolysis of NAD was 15.7 kcal/mol. In addition to NAD and NADP, a number of NAD analogs were shown to function as substrates for the enzyme. Product inhibition studies demonstrated nicotinamide to be a noncompetitive inhibitor with a KI of 1.5 mM and adenosine diphosphoribose a competitive inhibitor with a KI of 0.36 mM. Procion blue HB (Cibacron blue F3GA) was shown to be a competitive inhibitor with a KI of 33 nmol. The purified NADase catalyzed the pyridine base exchange reaction between 3-acetylpyridine and the nicotinamide moiety of NAD.  相似文献   

7.
Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ that is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The activity of the enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that cADPR may be a general messenger for Ca2+ mobilization in cells. An aqueous soluble enzyme, thought to be an NADase, has been purified recently from the ovotestis of Aplysia californica (Hellmich and Strumwasser, 1991). This paper shows that the Aplysia enzyme catalyzes the conversion of NAD+ to cADPR and nicotinamide. The Aplysia enzyme was purified by fractionating the soluble extract of Aplysia ovotestis on a Spectra/gel CM column. The purified enzyme appeared as a single band of approximately 29,000 Da on SDS-PAGE but could be further separated into multiple peaks by high-resolution, cation-exchange chromatography. All of the protein peaks had enzymatic activity, indicating that the enzyme had multiple forms differing by charge. Analysis of the reaction products of the enzyme by anion-exchange high-pressure liquid chromatography (HPLC) indicated no ADP-ribose was produced; instead, each mole of NAD+ was converted to equimolar of cADPR and nicotinamide. The identification of the product as cADPR was further substantiated by proton NMR and also by its Ca(2+)-mobilizing activity. Addition of the product to sea urchin egg homogenates induced Ca2+ release and desensitized the homogenate to authentic cADPR but not to IP3. Microinjection of the product into sea urchin eggs elicited Ca2+ transients as well as the cortical exocytosis reaction. Therefore, by the criteria of HPLC, NMR, and calcium-mobilizing activity, the product was identical to cADPR. To distinguish the Aplysia enzyme from the conventional NADases that produce ADP-ribose, we propose to name it ADP-ribosyl cyclase.  相似文献   

8.
9.
An egg-specific NADase has been purified from the ovotestis of the marine mollusk Aplysia californica. The enzyme converts NAD to cyclic ADP-ribose (cADPR), which is a potent mobilizer of Ca2+. It is likely that the NADase serves to raise Ca2+ levels in the ova at appropriate times. A 1.2-kb cDNA clone containing the complete coding sequence of the native NADase protein was isolated from an unamplified ovotestis cDNA library and represents the first cloning of an NADase that generates cADPR. In vitro translation studies indicate that the protein initially has a signal sequence that may help to target it to discrete vesicles of the ova in which it is found. There are 12 cysteines in the open reading frame, two of these being in the signal sequence. No part of the sequence has significant similarity to other proteins or known nucleotide binding site consensus sequences. Northern blot analysis of poly(A)+ selected ovotestis RNA has identified an NADase mRNA of 1.85 kb. In situ hybridization analysis of cryostat sections from ovotestis has shown that the NADase mRNA is restricted to the immature ova, although the NADase protein is present in both immature and mature eggs.  相似文献   

10.
The melastatin-related transient receptor potential channel TRPM2 is a plasma membrane Ca2+-permeable cation channel that is activated by intracellular adenosine diphosphoribose (ADPR) binding to the channel's enzymatic Nudix domain. Channel activity is also seen with nicotinamide dinucleotide (NAD+) and hydrogen peroxide (H2O2), but their mechanisms of action remain unknown. Here, we identify cyclic adenosine diphosphoribose (cADPR) as an agonist of TRPM2 with dual activity: at concentrations above 100 microM, cADPR can gate the channel by itself, whereas lower concentrations of 10 microM have a potentiating effect that enables ADPR to gate the channel at nanomolar concentrations. ADPR's breakdown product adenosine monophosphate (AMP) specifically inhibits ADPR, but not cADPR-mediated gating of TRPM2, whereas the cADPR antagonist 8-Br-cADPR exhibits the reverse block specificity. Our results establish TRPM2 as a coincidence detector for ADPR and cADPR signaling and provide a functional context for cADPR as a second messenger for Ca2+ influx.  相似文献   

11.
Cyclic ADP‐ribose (cADPR) mobilizes intracellular Ca2+ stores and activates Ca2+ influx to regulate a wide range of physiological processes. It is one of the products produced from the catalysis of NAD+ by the multifunctional CD38/ADP‐ribosyl cyclase superfamily. After elimination of the nicotinamide ring by the enzyme, the reaction intermediate of NAD+ can either be hydrolyzed to form linear ADPR or cyclized to form cADPR. We have previously shown that human CD38 exhibits a higher preference towards the hydrolysis of NAD+ to form linear ADPR while Aplysia ADP‐ribosyl cyclase prefers cyclizing NAD+ to form cADPR. In this study, we characterized the enzymatic properties of porcine CD38 and revealed that it has a prominent secondary NAD+ cyclase activity producing cADPR. We also determined the X‐ray crystallographic structures of porcine CD38 and were able to observe conformational flexibility at the base of the active site of the enzyme which allow the NAD+ reaction intermediate to adopt conformations resulting in both hydrolysis and cyclization forming linear ADPR and cADPR respectively.  相似文献   

12.
Cyclic ADP-ribose (cADPR) is a universal calcium messenger molecule that regulates many physiological processes. The production and degradation of cADPR are catalyzed by a family of related enzymes, including the ADP-ribosyl cyclase from Aplysia california (ADPRAC) and CD38 from human. Although ADPRC and CD38 share a common evolutionary ancestor, their enzymatic functions toward NAD and cADPR homeostasis have evolved divergently. Thus, ADPRC can only generate cADPR from NAD (cyclase), whereas CD38, in contrast, has multiple activities, i.e. in cADPR production and degradation, as well as NAD hydrolysis (NADase). In this study, we determined a number of ADPRC and CD38 structures bound with various nucleotides. From these complexes, we elucidated the structural features required for the cyclization (cyclase) reaction of ADPRC and the NADase reaction of CD38. Using the structural approach in combination with site-directed mutagenesis, we identified Phe-174 in ADPRC as a critical residue in directing the folding of the substrate during the cyclization reaction. Thus, a point mutation of Phe-174 to glycine can turn ADPRC from a cyclase toward an NADase. The equivalent residue in CD38, Thr-221, is shown to disfavor the cyclizing folding of the substrate, resulting in NADase being the dominant activity. The comprehensive structural comparison of CD38 and APDRC presented in this study thus provides insights into the structural determinants for the functional evolution from a cyclase to a hydrolase.Cyclic ADP-ribose (cADPR)3 is a calcium messenger ubiquitous in mammals as well as in invertebrates and plants and is responsible for regulating many physiological processes ranging from the simple function of calcium channel operation to the complex higher level organization of hormone secretion and autism (reviewed in Lee (1), Schuber and Lund (2), and Malavasi et al. (3)). The enzymatic production of cADPR from the substrate nicotinamide adenine dinucleotide (NAD) requires first the removal of the nicotinamide moiety followed by a cyclization reaction in which both ends of the remaining nucleotide are annealed (Fig. 1A). ADP-ribosyl cyclase (ADPRC) from Aplysia california was the first enzyme discovered to possess this function (cyclase) (4). Based on sequence homology (5), two human antigens, CD38 and CD157, were identified to also have the cyclase activity (68). However, different from ADPRC, which produces only cADPR from NAD, CD38/CD157 has evolved more like an NADase, producing mainly ADP-ribose (ADPR) from NAD, with cADPR being a minor product. The acquisition of the NADase and the cADPR hydrolysis activities of CD38 make it an important signaling enzyme in regulating NAD and cADPR homeostasis (911). Genetic analysis, as well as the conservation of sequence and disulfide bonds among these enzymes, establish that they all evolved from a common ancestor (12). Little is known of why this conserved family of enzymes has evolved divergently in their catalytic metabolism of NAD and cADPR.Open in a separate windowFIGURE 1.Schemes of cADPR formation and mechanistic analogs for substrate and product. A, the cyclization reaction producing cADPR from NAD is catalyzed by both ADPRC and CD38. The structural difference between cADPR and N1-cIDPR lies at the 6-position of purine ring (6-NH for cADPR; 6-O for N1-cIDPR). B, an analog of the substrate NAD, N(2F-A)D, is enzymatically converted to 2F-ADPR by ADPRC instead of cyclized to c(2F-A)DPR. The formation of cADPR from NAD requires the intramolecular attack of the reaction intermediate by the adenine N1 atom. The addition of a fluorine atom on the adjacent C2 atom of adenine prevents the cyclization from occurring. C, ara-2′F-NAD and ribo-2′F-NAD are analogs of NAD that inhibit the cyclization reaction by producing covalent adducts during the catalysis by CD38. Both analogs differ only in the orientation of their fluorine atoms at the 2′-position of the adenine ribose.ADPRC, however, is not solely a cyclase because it can also catalyze the hydrolysis of NMN into ribose-5-phosphate and nicotinamide (13, 14). The catalytic outcome of this novel enzyme is thus determined not by the enzyme alone but also by the specific interactions between the active site and a particular substrate. Consistently, using an NAD analog, N(2F-A)D, as substrate, Zhang et al. (15) showed that the hydrolase activity of ADPRC can be dominantly revealed, whereas its cyclase activity is suppressed beyond detection (Fig. 1B). Likewise, human CD38 can be converted to a ADPRC-like enzyme by mutation of a single residue, Glu-146, at the active site (16). In this study, we determined the structural determinants critical for the catalytic characteristics of ADPRC and CD38 by comparing the crystal structures of the complexes of ADPRC and CD38 bound with various catalytically revealing substrates and products (Fig. 1, A–C). The results identify residues Phe-174 in the cyclase and Thr-221 in CD38 as the main determinants for the cyclase and hydrolysis activities of the enzymes. All together, these structures provide insights into the structural requirements for functional evolution from a cyclase to a hydrolase.  相似文献   

13.
We recently reported that cADP-ribose (cADPR) and ADP-ribose (ADPR) play an important role in the regulation of the Ca(2+)-activated K(+) (K(Ca)) channel activity in coronary arterial smooth muscle cells (CASMCs). The present study determined whether these novel signaling nucleotides participate in 11,12-epoxyeicosatrienoic acid (11,12-EET)-induced activation of the K(Ca) channels in CASMCs. HPLC analysis has shown that 11,12-EET increased the production of ADPR but not the formation of cADPR. The increase in ADPR production was due to activation of NAD glycohydrolase as measured by a conversion rate of NAD into ADPR. The maximal conversion rate of NAD into ADPR in coronary homogenate was increased from 2.5 +/- 0.2 to 3.4 +/- 0.3 nmol*(-1) *mg protein(-1) by 11,12-EET. The regioisomers of 8,9-EET, 11,12-EET, and 14,15-EET also significantly increased ADPR production from NAD. Western blot analysis and immunoprecipitation demonstrated the presence of NAD glycohydrolase, which mediated 11,12-EET-activated production of ADPR. In cell-attached patches, 11,12-EET (100 nM) increases K(Ca) channel activity by 5.6-fold. The NAD glycohydrolase inhibitor cibacron blue 3GA (3GA, 100 microM) significantly attenuated 11,12-EET-induced increase in the K(Ca) channel activity in CASMCs. However, 3GA had no effect on the K(Ca) channels activity in inside-out patches. 11,12-EET produced a concentration-dependent relaxation of precontracted coronary arteries. This 11,12-EET-induced vasodilation was substantially attenuated by 3GA (30 microM) with maximal inhibition of 57%. These results indicate that 11,12-EET stimulates the production of ADPR and that intracellular ADPR is an important signaling molecule mediating 11,12-EET-induced activation of the K(Ca) channels in CASMCs and consequently results in vasodilation of coronary artery.  相似文献   

14.
The ectoenzyme CD38 catalyzes the production of cyclic ADP-ribose (cADPR) and ADP-ribose (ADPR) from its substrate, NAD(+). Both products of the CD38 enzyme reaction play important roles in signal transduction, as cADPR regulates calcium release from intracellular stores and ADPR controls cation entry through the plasma membrane channel TRPM2. We previously demonstrated that CD38 and the cADPR generated by CD38 regulate calcium signaling in leukocytes stimulated with some, but not all, chemokines and controls leukocyte migration to inflammatory sites. However, it is not known whether the other CD38 product, ADPR, also regulates leukocyte trafficking In this study we characterize 8-bromo (8Br)-ADPR, a novel compound that specifically inhibits ADPR-activated cation influx without affecting other key calcium release and entry pathways. Using 8Br-ADPR, we demonstrate that ADPR controls calcium influx and chemotaxis in mouse neutrophils and dendritic cells activated through chemokine receptors that rely on CD38 and cADPR for activity, including mouse FPR1, CXCR4, and CCR7. Furthermore, we show that the calcium and chemotactic responses of leukocytes are not dependent on poly-ADP-ribose polymerase 1 (PARP-1), another potential source of ADPR in some leukocytes. Finally, we demonstrate that NAD(+) analogues specifically block calcium influx and migration of chemokine-stimulated neutrophils without affecting PARP-1-dependent calcium responses. Collectively, these data identify ADPR as a new and important second messenger of mouse neutrophil and dendritic cell migration, suggest that CD38, rather than PARP-1, may be an important source of ADPR in these cells, and indicate that inhibitors of ADPR-gated calcium entry, such as 8Br-ADPR, have the potential to be used as anti-inflammatory agents.  相似文献   

15.
CD38 is a type II transmembrane glycoprotein that is expressed by many cell types including lymphocytes. Signaling through CD38 on B lymphocytes can mediate B cell activation, proliferation, and cytokine secretion. Additionally, coligation of CD38 and the B cell Ag receptor can greatly augment B cell Ag receptor responses. Interestingly, the extracellular domain of CD38 catalyzes the conversion of NAD+ into nicotinamide, ADP-ribose (ADPR), and cyclic ADPR (cADPR). cADPR can induce intracellular calcium release in an inositol trisphosphate-independent manner and has been hypothesized to regulate CD38-mediated signaling. We demonstrate that replacement of the cytoplasmic tail and the transmembrane domains of CD38 did not impair CD38 signaling, coreceptor activity, or enzyme activity. In contrast, independent point mutations in the extracellular domain of CD38 dramatically impaired signal transduction. However, no correlation could be found between CD38-mediated signaling and the capacity of CD38 to catalyze an enzyme reaction and produce cADPR, ADPR, and/or nicotinamide. Instead, we propose that CD38 signaling and coreceptor activity in vitro are regulated by conformational changes induced in the extracellular domain upon ligand/substrate binding, rather than on actual turnover or generation of products.  相似文献   

16.
Lipoamide dehydrogenase (NADH:lipoamide oxidoreductase, EC 1.6.4.3) isolate from pig heart and Escherichia coli was covalently coupled by both diazonium and amide bonds to controlled pore glass beads (96% silica). When the enzyme was immobilized in the presence of NAD+, the enzyme no longer exhibited its normal requirement for NAD+ for full activity. If the immobilized enzyme was then treated with NADase, the requirement for NAD+ was restored. Enzyme immobilized in the absence of NAD+ exhibited normal NAD+ dependence both prior to an after NADase treatment. These results are discussed in terms of co-immobilization of NAD+ at or near the allosteric site of the enzyme.  相似文献   

17.
ADP-ribosyl cyclases are structurally conserved enzymes that are best known for catalyzing the production of the calcium-mobilizing metabolite, cyclic adenosine diphosphate ribose (cADPR), from nicotinamide adenine dinucleotide (NAD(+)). However, these enzymes also produce adenosine diphosphate ribose (ADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP(+)), both of which have been shown to modulate calcium mobilization in vitro. We have now characterized a new member of the cyclase family from Schistosoma mansoni, a member of the Platyhelminthes phylum. We show that the novel NAD(P)(+) catabolizing enzyme (NACE) expressed by schistosomes is structurally most closely related to the cyclases cloned from Aplysia but also shows significant homology with the mammalian cyclases, CD38 and CD157. NACE expression is developmentally regulated in schistosomes, and the GPI-anchored protein is localized to the outer tegument of the adult schistosome. Importantly, NACE, like all members of the cyclase family, is a multifunctional enzyme and catalyzes NAD(+) glycohydrolase and base-exchange reactions to produce ADPR and NAADP(+). However, despite being competent to generate a cyclic product from NGD(+), a nonphysiologic surrogate substrate, NACE is so far the only enzyme in the cyclase family that is unable to produce significant amounts of cADPR (<0.02% of reaction products) using NAD(+) as the substrate. This suggests that the other calcium-mobilizing metabolites produced by NACE may be more important for calcium signaling in schistosomes. Alternatively, the function of NACE may be to catabolize extracellular NAD(+) to prevent its use by host enzymes that utilize this source of NAD(+) to facilitate immune responses.  相似文献   

18.
Regulation of intracellular levels of NAD: a novel role for CD38   总被引:1,自引:0,他引:1  
Nicotinamide adenine dinucleotide (NAD) plays key roles in many cellular functions. In addition to its well-known role in energy metabolism, NAD also plays a role in signal transduction, ageing, and cellular injury. NAD is also involved in many signal transduction pathways. Therefore, it is imperative to understand the mechanisms that control intracellular NAD levels. However, to date, the mechanisms that regulate intracellular levels of NAD have not been completely elucidated. CD38 is a multifunctional enzyme ubiquitously distributed in mammalian tissues. CD38 has been implicated as the enzyme responsible for the synthesis of the second messengers. However, its major enzymatic activity is the hydrolysis of NAD, in fact, CD38 will generate one molecule of cADPR for every 100 molecules of NAD hydrolyzed. To date, the role of CD38 as a modulator of levels of NAD has not been explored. We postulated that CD38 is the major NADase in mammalian cells and that it regulates intracellular NAD levels. In the current studies we examined the NADase activities and NAD levels in a variety of tissues from both wild-type and CD38 deficient mice. In accordance with our hypothesis, we found that tissue levels of NAD in CD38 deficient mice are 10- to 20-fold higher than in wild-type animals. In addition, NADase activity in the plasma membrane, mitochondria, sarcoplasmic reticulum, and nuclei is essentially absent in most tissues from CD38 deficient mice. These data support the novel concept that CD38 is a major regulator of cellular NAD levels. These findings have implications for understanding the mechanisms that regulate intracellular NAD levels and its role in energy homeostasis, signal transduction, and ageing.  相似文献   

19.
NAD glycohydrolases are the longest known enzymes that catalyze ADP-ribose transfer. The function of these ubiquitous, membrane-bound enzymes has been a long standing puzzle. The NAD glycohydrolase are briefly reviewed in light of the discovery by our laboratory that NAD glycohydrolases are bifunctional enzymes that can catalyze both the synthesis and hydrolysis of cyclic ADP-ribose, a putative second messenger of calcium homeostasis.Abbreviations NADase nicotinamide adenine dinucleotide glycohydrolase - NAD nicotinamide adenine dinucleotide - ADP-ribose adenosine diphosphoribose - cADPR cyclic adenosine diphosphoribose  相似文献   

20.
Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ which is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that it may be a general messenger for Ca2+ mobilization in cells. In this study I address questions of whether an intracellular receptor for cADPR exists and, if so, whether it is different from the IP3 receptor. A procedure employing nitrogen decompression was used to homogenize sea urchin eggs, and the Ca2(+)-storing microsomes were separated from mitochondria and other organelles by Percoll density centrifugation. Radioactive cADPR with high specific activity was produced by incubating [32P]NAD+ with the synthesizing enzyme and the product purified by high pressure liquid chromatography. The enzyme was membrane bound and was isolated from dog brain extracts by sucrose density gradient centrifugation. Partial purification of the enzyme was achieved by DEAE ion-exchange chromatography after solubilization with 3-[(cholamidopropyl)dimethylammonio]-1-propanesulfonate. Specific binding of 32P-labeled cADPR to a saturable site on the Ca2(+)-storing microsomes was detected by a filtration assay. Scatchard analysis indicated a binding affinity of about 17 nM and a capacity of about 25 fmol/mg protein. The binding was not affected by either NAD+ (the precursor) or ADP-ribose (the hydrolysis product) at 0.5 microM but was eliminated by 0.3 microM nonlabeled cADPR. The receptor for cADPR appeared to be different from that of IP3 since IP3 was not an effective competitor at a concentration as high as 3 microM. Similarly, heparin at a concentration that inhibits most of the IP3-induced calcium release from the microsomes did not affect the binding. The binding showed a prominent pH optimum at about 6.7. Calcium at 40 microM decreased the binding by about 50%. These dependencies of the binding on pH and Ca2+ are different from those reported for the IP3 receptor and provide further support that the intracellular receptors for cADPR and IP3 are different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号