首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of Lactobacillus bavaricus, a meat isolate, to inhibit the growth of three Listeria monocytogenes strains was examined in three beef systems: beef cubes, beef cubes in gravy, and beef cubes in gravy containing glucose. The beef was minimally heat treated, inoculated with L. bavaricus at 10(5) or 10(3) CFU/g and L. monocytogenes at 10(2) CFU/g, vacuum sealed, and stored at 4 or 10 degrees C. The meat samples were monitored for microbial growth, pH, and bacteriocin production. The pathogen was inhibited by L. bavaricus MN. At 4 degrees C, L. monocytogenes was inhibited or killed depending on the initial inoculum level of L. bavaricus. At 10 degrees C, at least a 10-fold reduction of the pathogen occurred, except in the beef without gravy. This system showed a transient inhibition of the pathogen during the first week of storage followed by growth to control levels by the end of the incubation period. Bacteriocin was detected in the samples, and inhibition could not be attributed to acidification. Low refrigeration temperatures significantly (P < or = 0.05) enhanced L. monocytogenes inhibition. Moreover, the addition of glucose-containing gravy and the higher inoculum level of L. bavaricus were significantly (P < or = 0.05) more effective in reducing L. monocytogenes populations in most of the systems studied.  相似文献   

2.
Duplicate beef gravy or ground beef samples inoculated with a suspension of a four-strain cocktail of Escherichia coli O157:H7 were subjected to sublethal heating at 46 °C for 15–30 min, and then heated to a final internal temperature of 60 °C. Survivor curves were fitted using a linear model that incorporated a lag period (TL), and D-values and 'time to a 4D inactivation' (T4D) were calculated. Heat-shocking allowed the organism to survive longer than non-heat-shocked cells; the T4D values at 60 °C increased 1·56- and 1·50-fold in beef gravy and ground beef, respectively. In ground beef stored at 4 °C, thermotolerance was lost after storage for 14 h. However, heat-shocked cells appeared to maintain their thermotolerance for at least 24 h in ground beef held at 15 or 28 °C. A 25 min heat shock at 46 °C in beef gravy resulted in an increase in the levels of two proteins with apparent molecular masses of 60 and 69 kDa. These two proteins were shown to be immunologically related to GroEL and DnaK, respectively. Increased heat resistance due to heat shock must be considered while designing thermal processes to assure the microbiological safety of thermally processed foods.  相似文献   

3.
Growth of Listeria monocytogenes at refrigeration temperatures   总被引:1,自引:1,他引:0  
The growth of three strains of Listeria monocytogenes at refrigeration temperatures (-0.5 to 9.3°C) in chicken broth and/or UHT milk was determined using a rocking temperature gradient incubator. Minimum growth temperatures ranged from -0.1 to -0.4°C for the three strains. Lag times of 1–3 d and 3 to >34 d were observed with incubation at 5 and 0°C respectively. Corresponding generation times ranged from 13–24 h at 5°C and 62–131 h at 0°C. The type of culture medium had an influence on both the rate and extent of growth. Incubation of cultures at 4°C before inoculation caused a marked reduction in the lag time when compared with cultures which had been previously incubated at 30°C.  相似文献   

4.
Bacterial isolates from bean-sprouts were screened for anti- Listeria monocytogenes bacteriocins using a well diffusion method. Thirty-four of 72 isolates inhibited the growth of L.monocytogenes Scott A. One, HPB 1688, which had the biggest inhibition zone against L.monocytogenes Scott A, was selected for subsequent analysis. Both ribotyping and DNAsequencing of 16S ribosomal RNA gene demonstrated that the isolate was Lactococcus lactis subsp. lactis . Polymerase chain reaction and nucleotide sequencing revealed that thegenomic DNA of the bean-sprout isolates contained a nisin Z structural gene. In MRS broth,bean-sprout isolate HPB 1688 survived at 3–4·5°C for at least 20 d, grew at 4°Cand produced anti-listerial compoundsat 5°C. When co-cultured with L. monocytogenes in MRS broth, the isolate inhibited thegrowth of L. monocytogenes at 4°C after 14d and at 10°C after 2 d. When co-inoculatedwith 102cells g−1 of L.monocytogenes on fresh-cut ready-to-eat Caesar salad, L. lactis subsp. lactis (108cells g−1) was able to reduce the number of L. monocytogenes by 1–1·4 logs after storage for 10 d at 7° and 10°C. A bacteriocin-producing Enterococcusfaecium was also able to reduce the numbers of L. monocytogenes onCaesar salad, butdid not act synergistically when co-inoculated with L. lactis subsp. lactis .  相似文献   

5.
Cows' milk was inoculated with ca 103and 107cfu/ml Listeria monocytogenes. After fermentation at 42°C for 0–5 h, the yogurt was stored at 4°C. Low and high inocula survived for 48 h and 7 d, respectively; L. monocytogenes cells were not detectable by direct plating or cold-enrichment after 5 and 15 d, respectively. In low inoculum samples, initial pH at the time of refrigeration was 4·9; the final pH at the time of last sampling was 4·2. In the samples with high inoculum the pH decreased from 5·0 to 4·2.  相似文献   

6.
The presence of psychrotrophic enterotoxigenic Bacillus cereus in ready-to-serve meats and meat products that have not been subjected to sterilization treatment is a public health concern. A study was undertaken to determine the survival, growth, and diarrheal enterotoxin production characteristics of four strains of psychrotrophic B. cereus in brain heart infusion (BHI) broth and beef gravy as affected by temperature and supplementation with nisin. A portion of unheated vegetative cells from 24-h BHI broth cultures was sensitive to nisin as evidenced by an inability to form colonies on BHI agar containing 10 micrograms of nisin/ml. Heat-stressed cells exhibited increased sensitivity to nisin. At concentrations as low as 1 microgram/ml, nisin was lethal to B. cereus, the effect being more pronounced in BHI broth than in beef gravy. The inhibitory effect of nisin (1 microgram/ml) was greater on vegetative cells than on spores inoculated into beef gravy and was more pronounced at 8 degrees C than at 15 degrees C. Nisin, at a concentration of 5 or 50 micrograms/ml, inhibited growth in gravy inoculated with vegetative cells and stored at 8 or 15 degrees C, respectively, for 14 days. Growth of vegetative cells and spores of B. cereus after an initial period of inhibition is attributed to loss of activity of nisin. One of two test strains produced diarrheal enterotoxin in gravy stored at 8 or 15 degrees C within 9 or 3 days, respectively. Enterotoxin production was inhibited in gravy supplemented with 1 microgram of nisin/ml and stored at 8 degrees C for 14 days; 5 micrograms of nisin/ml was required for inhibition at 15 degrees C. Enterotoxin was not detected in gravy in which less than 5.85 log10 CFU of B. cereus/ml had grown. Results indicate that as little as 1 microgram of nisin/ml may be effective in inhibiting or retarding growth of and diarrheal enterotoxin production by vegetative cells and spores of psychrotrophic B. cereus in beef gravy at 8 degrees C, a temperature exceeding that recommended for storage or for most unpasteurized, ready-to-serve meat products.  相似文献   

7.
The influence of various factors on the fate of Listeria monocytogenes on cut leaves of broad-leaved endive has been studied. Factors considered were temperature, characteristics of the leaves (age, quantity and quality of the epiphytic microflora) and characteristics of the L. monocytogenes inoculum (concentration, strain). The increases in numbers of L. monocytogenes were lower than those of the aerobic mesophilic microflora at 3°, 6°, 10° and 20°C. Doubling times of the populations of L. monocytogenes were in the same order of magnitude as those of aerobic bacteria at 10° and 20°C, but longer at 3° and 6°C. There were positive significant correlations between growth of L. monocytogenes and populations of aerobic bacteria, and between growth of L. monocytogenes and extent of spoilage on the leaves.
Of 225 bacteria isolated from the leaves, 84% were identified as fluorescent pseudomonads; there was no difference in the species isolated from leaves that showed a low growth of L. monocytogenes and leaves that showed a high growth of L. monocytogenes. Populations of L. monocytogenes increased faster during the first 2 and 4 d of storage at 10°C on leaves inoculated with 10–103 cfu g-1 than on leaves inoculated with about 105 cfu g-1, but the population reached after 7 d was lower. The behaviour of L. monocytogenes was similar among the three strains tested.  相似文献   

8.
Listeria monocytogenes is a food-borne pathogenic bacterium that can be found in softcheese. At the beginning of cheese ripening, the pH is about 4·85–4·90. The aimof this work was to study the influence of temperature, preincubation temperature (temperature atwhich the inoculum was cultivated) and initial bacterial concentration on the survival of L.monocytogenes (strain Scott A) at pH 4·8. It was demonstrated in an earlier study thatthese factors did influence growth kinetics. Survival studies of L. monocytogenes weredone in a laboratory broth simulating cheese composition. Four test temperatures (2, 6, 10 and14°C) and two preincubation temperatures were studied (30°C or the test temperature). Listeria monocytogenes (strain Scott A) was unable to grow at pH 4·8 under allconditions tested. The time for 10% survival was about 11 and 2 d, at 2°C with preincubationat 2°C and 30°C, respectively; 9 d at 6°C with preincubation at 6°C; 4 d at 6°Cwith preincubation at 30°C; and 1 d at 14°C with preincubation at 14°C or at 30°C.The results show that survival of L. monocytogenes (strain Scott A) at pH 4·8 is notdependent on initial bacterial concentration but on both the test and preincubation temperatures.  相似文献   

9.
s. BUNCIC AND S.M. AVERY. 1996. Three haemolytic, pathogenic strains of Listeria monocytogenes (a reference strain, a food-derived strain and a human strain) were held at 4°C for 4 weeks in phosphate-buffered saline pH 5.5 or 7.0, with and without 0.2% potassium sorbate or 0.3% sodium acetate. The number of viable cells did not change significantly during this storage. Pathogenicity of non-growing L. monocytogenes cells for 14-d-old chick embryos was determined before and after storage. Storage at 4°C resulted in decreased pathogenicity, but effects were strain-, pH- and substrate-dependent. After 4 weeks storage at 4°C non-growing bacterial cells were transferred to Brain Heart Infusion broth and growth characteristics were determined during incubation at 37°C. Strains that showed decreased pathogenicity had significantly longer lag phases at 37°C than strains that maintained pathogenicity. It is concluded that decreased pathogenicity of L. monocytogenes stored without growth at 4°C for 4 weeks and subsequent long lag phase at 37°C are correlated.  相似文献   

10.
Fourteen strains of pectolytic clostridia have been isolated that were capable of growth at 5–10°C in 7 d; two strains were psychrophiles and failed to grow at 20°C in 14 d and the remainder were psychrotrophs. The bacteria formed pectate lyase enzymes and were capable of degrading potato tissue; they are therefore a potential cause of soft rot of potatoes stored at low temperatures. Doubling times for representative strains were 15–19 h at 10°C and 21–53 h at 5°C. Twelve strains were classified with Group I Clostridium species and two strains with Group II. In the case of one strain the mature spores were not released from the sporangium. Electron microscopy of ultrathin sections of this strain showed the presence of disorganized lamellar structures associated with the spore coat.  相似文献   

11.
Pathogens found in the environment of abattoirs may become adapted to lactic acid used to decontaminate meat. Such organisms are more acid tolerant than non-adapted parents and can contaminate meat after lactic acid decontamination (LAD). The fate of acid-adapted Yersinia enterocolitica and Listeria monocytogenes, inoculated on skin surface of pork bellies 2 h after LAD, was examined during chilled storage. LAD included dipping in 1%, 2% or 5% lactic acid solutions at 55°C for 120 s. LAD brought about sharp reductions in meat surface pH, but these recovered with time after LAD at ≈1–1·5 pH units below that of water-treated controls. Growth permitting pH at 4·8–5·2 was reached after 1% LAD in less than 0·5 d (pH 4·8–5·0), 2% LAD within 1·5 d (pH 4·9–5·1) and after 5% LAD (pH 5·0–5·2) within 4 d. During the lag on 2% LAD meat Y. enterocolitica counts decreased by 0·9 log10 cfu per cm2 and on 5% LAD the reduction was more than 1·4 log10 cfu per cm2. The reductions in L. monocytogenes were about a third of those in Y. enterocolitica . On 1% LAD the counts of both pathogens did not decrease significantly. The generation times of Y. enterocolitica and L. monocytogenes on 2–5% LAD meats were by up to twofold longer than on water-treated controls and on 1% LAD-treated meat they were similar to those on water-treated controls. Low temperature and acid-adapted L. monocytogenes and Y. enterocolitica that contaminate skin surface after hot 2–5% LAD did not cause an increased health hazard, although the number of Gram-negative spoilage organisms were drastically reduced by hot 2–5% LAD and intrinsic (lactic acid content, pH) conditions were created that may benefit the survival and the growth of acid-adapted organisms.  相似文献   

12.
The efficacy of nisin to control the food-borne pathogen Listeria monocytogenes in ricotta-type cheeses over long storage (70 d) at 6–8°C was determined. Cheeses were prepared from unpasteurized milk by direct acidification with acetic acid (final pH 5·9) and/or calcium chloride addition during heat treatment. Nisin was added in the commercial form of Nisaplin® pre-production to the milk. Each batch of cheese was inoculated with 102–103 cfu g−1 of a five-strain cocktail of L. monocytogenes before storage. Shelf-life analysis demonstrated that incorporation of nisin at a level of 2·5 mg l−1 could effectively inhibit the growth of L. monocytogenes for a period of 8 weeks or more (dependent on cheese type). Cheese made without the addition of nisin contained unsafe levels of the organism within 1–2 weeks of incubation. Measurement of initial and residual nisin indicated a high level of retention over the 10-week incubation period at 6–8°C, with only 10–32% nisin loss.  相似文献   

13.
Portions of skinless chicken breast meat (pH 5·8) were inoculated with a strain of Listeria monocytogenes and stored at 1, 6 or 15°C in (1) aerobic conditions; (2) 30% CO2+ air; (3) 30% CO2+ N2; and (4) 100% CO2. When samples were held at 1°C the organism failed to grow under any of the test conditions, despite marked differences between treatments in spoilage rate and ultimate microflora. At 6°C counts of L. monocytogenes increased ca 10-fold in aerobic conditions before spoilage of the meat, but only when the inoculum culture was incubated at 1°C rather than 37°C. In CO2 atmospheres growth of L. monocytogenes was inhibited on meat held at 6°C, especially under 100% CO2. By contrast, storage at 15°C led to spoilage of the meat within 2 d, in all gaseous environments, and listeria levels increased up to 100-fold. Differences in the behaviour of L. monocytogenes on poultry and red meats are discussed.  相似文献   

14.
The ability of 13 strains of Salmonella , representing 12 serotypes, to grow in a tryptone-yeast extract-glucose medium, acidified with HC1 to pH values between 3.80 and 5.60 at intervals of 0.20 units, has been investigated. During incubation at 30°C, growth occurred at minimum pH values of 3.8–4.0 in 1–3 d. At 20°C, growth occurred at minimum pH values of 3.8–4.2 in 3–5 d. In tests incubated at 10°C, growth occurred at minimum pH values of 4.4–4.8 in between 10 and 19 d.  相似文献   

15.
Survival of Vibrio cholerae El Tor serotype Inaba was examined in pasteurized milk, freshwater fish, raw beef and raw chicken at a variety of temperatures. Both food type and incubation temperature affected survival. At the lowest temperatures, V. cholerae remained viable in meats for up to 90 d at—5°C and 300 d at —25°C. In milk, however, it was not detectable after 34 d at —5°C and 150 d at —25°C. At 7°C it survived 32 d, on average, in milk and only 18–20 d in the other foods. At room temperatures survival periods were shorter, never exceeding 10 d, and it was not detected after 2 d incubation at 35°C in chicken and fish.  相似文献   

16.
Listeria monocytogenes survived in meat, cheese and egg ravioli stored at 5°C for 14 d. Ravioli were considered edible for the first 9 d of storage. Initial L. monocytogenes populations of 3 × 105 cfu/g of ravioli were reduced to non-detectable levels after heat treatment simulating that which would be used by the consumer.  相似文献   

17.
Twelve Listeria monocytogenes strains representing seven serovars were heat-treated in physiological saline by a glass capillary tube method. Five strains were treated at 58°, 60° and 62°C, three at 60°, 62° and 64°C and four at 60°C. Heat-treated bacteria were recovered on blood agar in two ways: (1) incubation at 37°C for 7 d; and (2) preincubation at 4°C for 5 d, followed by incubation at 37°C for 7 d. D and z values were determined. Better average recovery and higher D values were obtained when the preincubation procedure was used. The final evaluations of the heat resistance properties of the strains were therefore based on values for preincubated samples. D values recorded at 58°, 60°, 62° and 64°C for preincubated samples were 1.7–3.4, 0.72–3.1, 0.30–1.3 and 0.33–0.68 min, respectively. z values determined were 5.2–6.9°C. D values were compared statistically. Significant differences in heat resistance were noted both between serovars and between strains belonging to the same serovar.  相似文献   

18.
The Behaviour of a Food Poisoning Strain of Clostridium welchii in Beef   总被引:5,自引:5,他引:0  
S ummary : An inoculum of 105 spores of Clostridium welchii F2985/50 in meat survived steaming at 100° for 5 h, the number being reduced sevenfold for every hour of steaming. They also survived for at least 6 months in frozen meat stored at -5° and -20°, whereas vegetative cells died more rapidly at -5° than at -20°. In beef stored for 13 days at 1°, 5°, 10° and 15° there was no multiplication but a slow destruction of vegetative cells, but there was little change in the spore count. Slow multiplication occurred at 20° but at 25° and 37° growth was rapid. Only about 3% of the spores germinated without prior heat shock, so the majority failed to germinate in raw meat stored at any temperature, but did so once the meat had been heated. In meat which had been heated and allowed to cool almost all of the spores had lost their heat resistance.
It was found that the minimal growth temperature was related to pH and medium, so that meat with a pH higher than that used in these experiments (pH 5°7–5°8) would probably have a lower minimal growth temperature for these organisms and would thus be more susceptible to spoilage.  相似文献   

19.
Lactobacillus sake L13 produced hydrogen sulphide during growth at 0°C on vacuum-packaged beef of normal pH (5·6–5·8) when the packaging films used had oxygen permeabilities as high as 200 ml/m2/24 h/atm (measured at 25°C and 98% relative humidity. No hydrogen sulphide was detected when the film permeability was 300 ml/m2/24 h/atm. Sulphmyoglobin was formed whenever hydrogen sulphide was present except when the film permeability was very low (1 ml of oxygen/m2/24 h/atm). Lactobacillus sake L13 also produced hydrogen sulphide when grown on beef under anaerobic conditions at 5°C. When meat pH was high (6·4–6·6) hydrogen sulphide was first detected after incubation for 9 d. When 250 μg of glucose was added to each g of high pH meat, or when meat pH was normal (5·6–5·8), hydrogen sulphide was first detected after incubation for 18 d. The spoilage of beef by hydrogen sulphide-producing lactobacilli is more rapid when the pH of the meat is high because high-pH meat contains less glucose. Sulphmyoglobin formation and greening can be prevented by the use of packaging films of very low oxygen permeability.  相似文献   

20.
Low-acid foods (pH ≥ 4.5) are not sufficiently acidic to prevent growth of Clostridium botulinum in otherwise optimal conditions. The combination of sub-optimal pH and sub-optimal temperature may, however, result in a very significant reduction in the risk of growth of this bacterium compared with the risk in optimal conditions. The combined effect of incubation temperatures of 12° and 16°C and pH values between 5·2 and 5·5 on growth and toxin production from spores of Cl. botulinum during incubation for 28 d has been investigated. Growth and formation of toxin (type B) were detected only in medium at pH 5·5 and incubated at 16°C, corresponding to a probability of growth from a single spore within 14 d of 1·6 × 10-5. The probability of growth in 28 d in the remaining conditions was <9 × 10-6. After transfer of inoculated media from 12° to 30°C growth occurred at pH 5·2–5·5 within 19 d. After transfer of inoculated media from 12° to 20°C growth occurred at pH 5·5 and 5·4 but not at pH 5·3 or 5·2 in 40 d. Growth at pH 5·2–5·5 was accompanied by formation of toxin, in most cases of types A or B. In addition to the effect of sub-optimal temperature and pH, chelation of divalent metal ions by citrate may have contributed to inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号