首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An open system associated with an infrared gas analyzer was employed to study transients in CO2 exchange generated upon darkening preilluminated leaf discs of tobacco (Nicotiana tabacum vars John Williams Broadleaf and Havana Seed). An empirical formula presented previously enabled prediction of the analyzer response under nonsteady state conditions as a function of time and of the leaf CO2 exchange rate. A computer was used to evaluate parameters of the leaf CO2 release rate to provide an estimate of the initial rate of postillumination CO2 evolution and to produce maximal agreement between predicted and observed analyzer responses. In 21% O2, the decline in rate of CO2 evolution upon darkening followed first order kinetics. Initial rates of CO2 evolution following darkening were relatively independent of the prior ambient CO2 concentrations. However, rates of photorespiration expressed as a fraction of net photosynthesis declined rapidly with increasing external CO2 concentration at 21% O2. Under normal atmospheric conditions, photorespiration was 45 to 50% of the net CO2 fixation rate at 32°C and high irradiance. The rapid initial CO2 evolution observed upon darkening at 21% O2 was absent in 3% O2. Rates of photorespiration under normal atmospheric concentrations of CO2 and O2 as measured by the postillumination burst were highly dependent upon temperature (observed activation energy = 30.1 kilocalories per mole). The results are discussed with respect to previously published estimates of photorespiration in C3 leaf tissue.  相似文献   

2.
Photorespiration in Air and High CO(2)-Grown Chlorella pyrenoidosa   总被引:2,自引:2,他引:0       下载免费PDF全文
Shelp BJ  Canvin DT 《Plant physiology》1981,68(6):1500-1503
Oxygen inhibition of photosynthesis and CO2 evolution during photorespiration were compared in high CO2-grown and air-grown Chlorella pyrenoidosa, using the artificial leaf technique at pH 5.0. High CO2 cells, in contrast to air-grown cells, exhibited a marked inhibition of photosynthesis by O2, which appeared to be competitive and similar in magnitude to that in higher C3 plants. With increasing time after transfer to air, the photosynthetic rate in high CO2 cells increased while the O2 effect declined. Photorespiration, measured as the difference between 14CO2 and 12CO2 uptake, was much greater and sensitive to O2 in high CO2 cells. Some CO2 evolution was also present in air-grown algae; however, it did not appear to be sensitive to O2. True photosynthesis was not affected by O2 in either case. The data indicate that the difference between high CO2 and air-grown algae could be attributed to the magnitude of CO2 evolution. This conclusion is discussed with reference to the oxygenase reaction and the control of photorespiration in algae.  相似文献   

3.
Carbonyl sulfide (COS), a substrate for carbonic anhydrase, inhibited alkalization of the medium, O2 evolution, dissolved inorganic carbon accumulation, and photosynthetic CO2 fixation at pH 7 or higher by five species of unicellular green algae that had been air-adapted for forming a CO2-concentrating process. This COS inhibition can be attributed to inhibition of external HCO3 conversion to CO2 and OH by the carbonic anhydrase component of an active CO2 pump. At a low pH of 5 to 6, COS stimulated O2 evolution during photosynthesis by algae with low CO2 in the media without alkalization of the media. This is attributed to some COS hydrolysis by carbonic anhydrase to CO2. Although COS had less effect on HCO3 accumulation at pH 9 by a HCO3 pump in Scenedesmus, COS reduced O2 evolution probably by inhibiting internal carbonic anhydrases. Because COS is hydrolyzed to CO2 and H2S, its inhibition of the CO2 pump activity and photosynthesis is not accurate, when measured by O2 evolution, by NaH14CO3 accumulation, or by 14CO2 fixation.  相似文献   

4.
Chollet R 《Plant physiology》1978,61(6):929-932
Preincubation of illuminated tobacco (Nicotiana tabacum L.) leaf disks in glycidate (2,3-epoxypropionate) or glyoxylate inhibited photorespiration by about 40% as determined by the ratio of 14CO2 evolved into CO2-free air in light and in darkness. However, under identical preincubation conditions used for the light/dark 14C assays, the compounds failed to reduce photorespiration or stimulate net photosynthesis in tobacco leaf disks based on other CO2 exchange parameters, including the CO2 compensation concentration in 21% O2, the inhibitory effect of 21% O2 on net photosynthesis in 360 microliters per liter of CO2 and the rate of net photosynthetic 14CO2 uptake in air.

The effects of both glycidate and glyoxylate on the 14C assay are inconsistent with other measures of photorespiratory CO2 exchange in tobacco leaf disks, and thus these data question the validity of the light to dark ratio of 14CO2 efflux as an assay for relative rates of photorespiration (Zelitch 1968, Plant Physiol 43: 1829-1837). The results of this study specifically indicate that neither glycidate nor glyoxylate reduces photorespiration or stimulates net photosynthesis by tobacco leaf disks under physiological conditions of pO2 and pCO2, contrary to previous reports.

  相似文献   

5.
The postillumination transient of CO2 exchange and its relation to photorespiration has been examined in leaf discs from tobacco (Nicotiana tabacum) and maize (Zea mays). Studies of the transients observed by infrared gas analysis at 1, 21, and 43% O2 in an open system were extended using the nonsteady state model described previously (Peterson and Ferrandino 1984 Plant Physiol 76: 976-978). Cumulative CO2 exchange equivalents (i.e. nanomoles CO2) versus time were derived from the analyzer responses of individual transients. In tobacco (C3), subtraction of the time course of cumulative CO2 exchange under photorespiratory conditions (21 or 43% O2) from that obtained under nonphotorespiratory conditions (1% O2) revealed the presence of an O2-dependent and CO2-reversible component within the first 60 seconds following darkening. This component was absent in maize (C4) and at low external O2:CO2 ratios (i.e. <100) in tobacco. The size of the component in tobacco increased with net photosynthesis as irradiance was increased and was positively associated with inhibition of net photosynthesis by O2. This relatively simple and rapid method of analysis of the transient is introduced to eliminate some uncertainties associated with estimation of photorespiration based on the maximal rate of postillumination CO2 evolution. This method also provides a useful and complementary tool for detecting variation in photorespiration.  相似文献   

6.
Photosynthetic o(2) exchange kinetics in isolated soybean cells   总被引:8,自引:8,他引:0       下载免费PDF全文
Light-dependent O2 exchange was measured in intact, isolated soybean (Glycine max. var. Williams) cells using isotopically labeled O2 and a mass spectrometer. The dependence of O2 exchange on O2 and CO2 was investigated at high light in coupled and uncoupled cells. With coupled cells at high O2, O2 evolution followed similar kinetics at high and low CO2. Steady-state rates of O2 uptake were insignificant at high CO2, but progressively increased with decreasing CO2. At low CO2, steady-state rates of O2 uptake were 50% to 70% of the maximum CO2-supported rates of O2 evolution. These high rates of O2 uptake exceeded the maximum rate of O2 reduction determined in uncoupled cells, suggesting the occurrence of another light-induced O2-uptake process (i.e. photorespiration).

Rates of O2 exchange in uncoupled cells were half-saturated at 7% to 8% O2. Initial rates (during induction) of O2 exchange in uninhibited cells were also half-saturated at 7% to 8% O2. In contrast, steady-state rates of O2 evolution and O2 uptake (at low CO2) were half-saturated at 18% to 20% O2. O2 uptake was significantly suppressed in the presence of nitrate, suggesting that nitrate and/or nitrite can compete with O2 for photoreductant.

These results suggest that two mechanisms (O2 reduction and photorespiration) are responsible for the light-dependent O2 uptake observed in uninhibited cells under CO2-limiting conditions. The relative contribution of each process to the rate of O2 uptake appears to be dependent on the O2 level. At high O2 concentrations (≥40%), photorespiration is the major O2-consuming process. At lower (ambient) O2 concentrations (≤20%), O2 reduction accounts for a significant portion of the total light-dependent O2 uptake.

  相似文献   

7.
The submersed angiosperms Myriophyllum spicatum L. and Hydrilla verticillata (L.f.) Royal exhibited different photosynthetic pulse-chase labeling patterns. In Hydrilla, over 50% of the 14C was initially in malate and aspartate, but the fate of the malate depended upon the photorespiratory state of the plant. In low photorespiration Hydrilla, malate label decreased rapidly during an unlabeled chase, whereas labeling of sucrose and starch increased. In contrast, for high photorespiration Hydrilla, malate labeling continued to increase during a 2-hour chase. Thus, malate formation occurs in both photorespiratory states, but reduced photorespiration results when this malate is utilized in the light. Unlike Hydrilla, in low photorespiration Myriophyllum, 14C incorporation was via the Calvin cycle, and less than 10% was in C4 acids.

Ethoxyzolamide, a carbonic anhydrase inhibitor and a repressor of the low photorespiratory state, increased the label in glycolate, glycine, and serine of Myriophyllum. Isonicotinic acid hydrazide increased glycine labeling of low photorespiration Myriophyllum from 14 to 25%, and from 12 to 48% with high photorespiration plants. Similar trends were observed with Hydrilla. Increasing O2 increased the per cent [14C]glycine and the O2 inhibition of photosynthesis in Myriophyllum. In low photorespiration Myriophyllum, glycine labeling and O2 inhibition of photosynthesis were independent of the CO2 level, but in high photorespiration plants the O2 inhibition was competitively decreased by CO2. Thus, in low but not high photorespiration plants, glycine labeling and O2 inhibition appeared to be uncoupled from the external [O2]/[CO2] ratio.

These data indicate that the low photorespiratory states of Hydrilla and Myriophyllum are mediated by different mechanisms, the former being C4-like, while the latter resembles that of low CO2-grown algae. Both may require carbonic anhydrase to enhance the use of inorganic carbon for reducing photorespiration.

  相似文献   

8.
The role of photorespiration in the foliar assimilation of nitrate (NO3) and carbon dioxide (CO2) was investigated by measuring net CO2 assimilation, net oxygen (O2) evolution, and chlorophyll fluorescence in tomato leaves (Lycopersicon esculentum). The plants were grown under ambient CO2 with ammonium nitrate (NH4NO3) as the nitrogen source, and then exposed to a CO2 concentration of either 360 or 700 µmol mol?1, an O2 concentration of 21 or 2%, and either NO3 or NH4+ as the sole nitrogen source. The elevated CO2 concentration stimulated net CO2 assimilation under 21% O2 for both nitrogen treatments, but not under 2% O2. Under ambient CO2 and O2 conditions (i.e. 360 µmol mol?1 CO2, 21% O2), plants that received NO3 had 11–13% higher rates of net O2 evolution and electron transport rate (estimated from chlorophyll fluorescence) than plants that received NH4+. Differences in net O2 evolution and electron transport rate due to the nitrogen source were not observed at the elevated CO2 concentration for the 21% O2 treatment or at either CO2 level for the 2% O2 treatment. The assimilatory quotient (AQ) from gas exchange, the ratio of net CO2 assimilation to net O2 evolution, indicated more NO3 assimilation under ambient CO2 and O2 conditions than under the other treatments. When the AQ was derived from gross O2 evolution rates estimated from chlorophyll fluorescence, no differences could be detected between the nitrogen treatments. The results suggest that short‐term exposure to elevated atmospheric CO2 decreases NO3 assimilation in tomato, and that photorespiration may help to support NO3 assimilation.  相似文献   

9.
Two strains of marine Synechococcus possessed a much greater potential for photorespiration than other marine algae we have studied. This conclusion was based on the following physiological and biochemical characteristics: a) a light-dependent O2 inhibition of photosynthetic CO2 assimilation at atmospheric O2 concentrations. The degree of inhibition was dependent on the relative concentrations of dissolved O2 and CO2, being greatest at 100% O2 with no extra bicarbonate added to the medium; b) actively photosynthesizing cells had high levels of ribulose-1,5-bisphosphate carboxylase compared with phosphoenolpyruvate carboxylase; ribulose-1,5-bisphosphate oxygenase activities were three times greater than ribulose-1,5-bisphosphate carboxylase activities; c) cells photosynthesizing in 21% O2, showed significant 14C-labelling of phosphoglycolate and glycolate and the percentage of total carbon-14 incorporated into these two compounds increased when the O2 concentration was 100%; d) at 100% O2, there was a post-illumination enhanced rate of O2 consumption, which was three times greater than dark respiration, and the rate declined with increasing bicarbonate concentrations. The inhibitory effect of O2 on photosynthesis did not appear to be solely due to photorespiration, since O2 inhibition of photosynthetic O2 evolution was much greater than that of photosynthetic CO2 assimilation. Also, O2 inhibition of photosynthetic O2 evolution declined only slightly with decreasing light intensities, while the inhibition of CO2 assimilation declined rapidly with decreasing light intensity.  相似文献   

10.
Intraspecific measurements of photorespiration   总被引:3,自引:3,他引:0       下载免费PDF全文
The relative magnitudes of (a) CO2 compensation concentration, (b) zero CO2 intercept of the CO2 response curve, (c) O2 suppression of net photosynthesis, (d) differential 12CO2 and 14CO2 uptake, and (e) 14CO2 efflux into CO2-free air were determined in the dry bean (Phaseolus vulgaris L.) varieties Michelite-62 (M-62) and Red Kidney (RK). In comparing the two varieties for each of the above processes, there were three categories of response, M-62 > RK, M-62 = RK, and M-62 < RK. Since these processes did not give the same relative difference for the two varieties being studied, it was concluded that these phenomena cannot validly be used to estimate the magnitude of photorespiration, although they do identify its presence. The results suggest that photorespiration is but one component of O2 inhibition of net photosynthesis and that photorespiration itself has two or more component metabolic pathways.  相似文献   

11.
The weedy species Parthenium hysterophorus (Asteraceae) possesses a Kranz-like leaf anatomy. The bundle sheath cells are thick-walled and contain numerous granal chloroplasts, prominent mitochondria, and peroxisomes, all largely arranged in a centripetal position. Both mesophyll and bundle sheath chloroplasts accumulate starch. P. hysterophorus exhibits reduced photorespiration as indicated by a moderately low CO2 compensation concentration (20-25 microliters per liter at 30°C and 21% O2) and by a reduced sensitivity of net photosynthesis to 21% O2. In contrast, the related C3 species P. incanum and P. argentatum (guayule) lack Kranz anatomy, have higher CO2 compensation concentrations (about 55 microliters per liter), and show a greater inhibition of photosynthesis by 21% O2. Furthermore, in P. hysterophorus the CO2 compensation concentration is relatively less sensitive to changes in O2 concentrations and shows a biphasic response to changing O2, with a transition point at about 11% O2. Based on these results, P. hysterophorus is classified as a C3-C4 intermediate. The activities of diagnostic enzymes of C4 photosynthesis in P. hysterophorus were very low, comparable to those observed in the C3 species P. incanum (e.g. phosphoenolpyruvate carboxylase activity of 10-29 micromoles per milligram of chlorophyll per hour). Exposures of leaves of each species to 14CO2 (for 8 seconds) in the light resulted in 3-phosphoglycerate and sugar phosphates being the predominant initial 14C products (77-84%), with ≤4% of the 14C-label in malate plus aspartate. These results indicate that in the C3-C4 intermediate P. hysterophorus, the reduction in leaf photorespiration cannot be attributed to C4 photosynthesis.  相似文献   

12.
Rates of photosynthetic O2 evolution, for measuring K0.5(CO2 + HCO3) at pH 7, upon addition of 50 micromolar HCO3 to air-adapted Chlamydomonas, Dunaliella, or Scenedesmus cells, were inhibited up to 90% by the addition of 1.5 to 4.0 millimolar salicylhydroxamic acid (SHAM) to the aqueous medium. The apparent K1(SHAM) for Chlamydomonas cells was about 2.5 millimolar, but due to low solubility in water effective concentrations would be lower. Salicylhydroxamic acid did not inhibit oxygen evolution or accumulation of bicarbonate by Scenedesmus cells between pH 8 to 11 or by isolated intact chloroplasts from Dunaliella. Thus, salicylhydroxamic acid appears to inhibit CO2 uptake, whereas previous results indicate that vanadate inhibits bicarbonate uptake. These conclusions were confirmed by three test procedures with three air-adapted algae at pH 7. Salicylhydroxamic acid inhibited the cellular accumulation of dissolved inorganic carbon, the rate of photosynthetic O2 evolution dependent on low levels of dissolved inorganic carbon (50 micromolar Na-HCO3), and the rate of 14CO2 fixation with 100 micromolar [14C] HCO3. Salicylhydroxamic acid inhibition of O2 evolution and 14CO2-fixation was reversed by higher levels of NaHCO3. Thus, salicylhydroxamic acid inhibition was apparently not affecting steps of photosynthesis other than CO2 accumulation. Although salicylhydroxamic acid is an inhibitor of alternative respiration in algae, it is not known whether the two processes are related.  相似文献   

13.
Zelitch I 《Plant physiology》1968,43(11):1829-1837
A leaf disk assay for photorespiration has been developed based on the rate of release of recently fixed 14CO2 in light in a rapid stream of CO2-free air at 30° to 35°. In tobacco leaves (Havana Seed) photorespiration with this assay is 3 to 5 times greater than the 14CO2 output in the dark. In maize, photorespiration is only 2% of that in tobacco.

The importance of open leaf stomata, rapid flow rates of CO2-free air, elevated temperatures, and oxygen in the atmosphere in order to obtain release into the air of a larger portion of the 14CO2 evolved within the tissue in the light was established in tobacco. Photorespiration, but not dark respiration, was inhibited by α-hydroxy-2-pyridinemethanesulfonic acid, an inhibitor of glycolate oxidase, and by 3-(4-chlorophenyl)-1,1-dimethylurea (CMU), an inhibitor of photosynthetic electron transport, under conditions which did not affect the stomata. These experiments show that the substrates of photorespiration and dark respiration differ and also provide additional support for the role of glycolate as a major substrate of photorespiration. It was also shown that at 35° the quantity of 14CO2 released in the assay may represent only 33% of the gross 14CO2 evolved in the light, the remainder being recycled within the tissue.

It was concluded that maize does not evolve appreciable quantities of CO2 in the light and that this largely accounts for the greater efficiency of net photosynthesis exhibited by maize. Hence low rates of photorespiration may be expected to be correlated with a high rate of CO2 uptake at the normal concentrations of CO2 found in air and at higher light intensities.

  相似文献   

14.
The dependence of the CO2 compensation concentration on O2 partial pressure and the dependence of differential uptake of 14CO2 and 12CO2 on CO2 and O2 partial pressures are analyzed in illuminated white clover (Trifolium repens L.) leaves. The data show a deviation of the photosynthetic gas exchange from ribulose bisphosphate carboxylase oxygenase kinetics at 10°C but not at 30°C. This deviation is due to an effect of CO2 partial pressure on the ratio of photosynthesis to photorespiration which can be explained if active inorganic carbon transport is assumed.  相似文献   

15.
Using a manometric method, photosynthetic oxygen evolution and 14CO2 fixation have been determined for leaf tissue of Triticum aestivum L., Hordeum vulgare L., Phaseolus vulgaris L., and Lemna minor L. Approximately similar values in the range 0.2 to 0.4 millimoles grams fresh weight−1 hour−1 were obtained for both gases. In tissue subjected to vacuum infiltration, O2 evolution and 14CO2 fixation were barely measurable. It is considered that the elimination of photosynthetic gas exchange results from a decreased supply of CO2 to the chloroplasts. Chopping wheat laminae also leads to a reduction in photosynthetic gas exchange, slices 1 millimeter or less giving only 10 to 20% of the value for whole tissue. Respiration is unaffected by either treatment. Carbonic anhydrase did not improve photosynthetic gas exchange in infiltrated tissue. The use of sliced or vacuum-infiltrated leaf tissue in photosynthetic studies is discussed.  相似文献   

16.
Brown RH 《Plant physiology》1980,65(2):346-349
Reduced photorespiration has been reported in Panicum milioides on the basis of lower CO2 compensation concentrations than in C3 species, lower CO2 evolution in the light, and less response of apparent photosynthesis to O2 concentration. The lower response to O2 in P. milioides could be due to reduced O2 competition with CO2 for reaction with ribulose 1,5-bisphosphate, to a reduced loss of CO2, or to an initial fixation of CO2 by phosphoenolpyruvate carboxylase. Experiments were carried out with Panicum maximum Jacq., a C4 species having no apparent photorespiration; tall fescue (Festuca arundinacea Schreb.), a C3 species; P. milioides Nees ex Trin.; and Panicum schenckii Hack. The latter two species are closely related and have low photorespiration rates. CO2 exchange was measured at five CO2 concentrations ranging from 0 to 260 microliters per liter at both 2 and 21% O2. Mesophyll conductance or carboxylation efficiency was estimated by plotting substomatal CO2 concentrations against apparent photosynthesis. In the C4 species P. maximum, mesophyll conductance was 0.96 centimeters per second and was unaffected by O2 concentration. At 21% O2 mesophyll conductance of tall fescue was decreased 32% below the value at 2% O2. Decreases in mesophyll conductance at 21% O2 for P. milioides and P. schenckii were similar to that for tall fescue. On the other hand, loss of CO2 in CO2-free air, estimated by extrapolating the CO2 response curve to zero CO2, was increased from 1.8 to 6.5 milligrams per square decimeter per hour in tall fescue as O2 was raised from 2-21%. Loss of CO2 was less than 1 milligram per square decimeter per hour for P. milioides and P. schenckii and was unaffected by O2. The results suggest that the reduced O2 response in P. milioides and P. schenckii is due to a lower loss of CO2 in the light rather than less inhibition of carboxylation by O2, since the decrease in carboxylation efficiency at 21% O2 was similar for P. milioides, P. schenckii, and tall fescue. The inhibition of apparent photosynthesis by 21% O2 in these three species at low light intensities was similar at 31 to 36% which also indicates similar O2 effects on carboxylation. Apparent photosynthesis at high light intensity was inhibited less by 21% O2 in P. milioides (16.8%) and P. schenckii (23.8%) than in tall fescue (28.4%). This lower inhibition in the Panicum species may have been due to a higher degree of recycling of photorespired CO2 in these species than in tall fescue.  相似文献   

17.
Zelitch I 《Plant physiology》1990,92(2):352-357
The increase in net photosynthesis in M4 progeny of an O2-resistant tobacco (Nicotiana tabacum) mutant relative to wild-type plants at 21 and 42% O2 has been confirmed and further investigated. Self-pollination of an M3 mutant produced M4 progeny segregating high catalase phenotypes (average 40% greater than wild type) at a frequency of about 60%. The high catalase phenotype cosegregated precisely with O2-resistant photosynthesis. About 25% of the F1 progeny of reciprocal crosses between the same M3 mutant and wild type had high catalase activity, whether the mutant was used as the maternal or paternal parent, indicating nuclear inheritance. In high-catalase mutants the activity of NADH-hydroxypyruvate reductase, another peroxisomal enzyme, was the same as wild type. The mutants released 15% less photorespiratory CO2 as a percent of net photosynthesis in CO2-free 21% O2 and 36% less in CO2-free 42% O2 compared with wild type. The mutant leaf tissue also released less 14CO2 per [1-14C]glycolate metabolized than wild type in normal air, consistent with less photorespiration in the mutant. The O2-resistant photosynthesis appears to be caused by a decrease in photorespiration especially under conditions of high O2 where the stoichiometry of CO2 release per glycolate metabolized is expected to be enhanced. The higher catalase activity in the mutant may decrease the nonenzymatic peroxidation of keto-acids such as hydroxypyruvate and glyoxylate by photorespiratory H2O2.  相似文献   

18.
A normal appearing plant with a low rate of photorespiration (ratio of 14CO2 released light/dark = 1.6) was found in an unselected tobacco (Nicotiana tabacum) cultivar. The plant was self-pollinated, and further selections were made on several successive generations. Excised leaves from the progeny of the selections were examined for photorespiration and net CO2 assimilation in normal air during photosynthesis. Similar measurements were made of plants derived from selfed parents with high rates of photorespiration (ratio of 14CO2 released light/dark = 3.0 or greater). Efficient photosynthetic plants (greater than 22.0 mg of CO2 dm−2 hr−1) with low rates of photorespiration produced a larger proportion of efficient progeny (about 25%) than did selfing inefficient plants (about 6%), but this proportion did not increase in successive generations.  相似文献   

19.
Dry weight and Relative Growth Rate of Lemna gibba were significantly increased by CO2 enrichment up to 6000 l CO2 l–1. This high CO2 optimum for growth is probably due to the presence of nonfunctional stomata. The response to high CO2 was less or absent following four days growth in 2% O2. The Leaf Area Ratio decreased in response to CO2 enrichment as a result of an increase in dry weight per frond. Photosynthetic rate was increased by CO2 enrichment up to 1500 l CO2 l–1 during measurement, showing only small increases with further CO2 enrichment up to 5000 l CO2 l–1 at a photon flux density of 210 mol m–2 s–1 and small decreases at 2000 mol m–1 s–1. The actual rate of photosynthesis of those plants cultivated at high CO2 levels, however, was less than the air grown plants. The response of photosynthesis to O2 indicated that the enhancement of growth and photosynthesis by CO2 enrichment was a result of decreased photorespiration. Plants cultivated in low O2 produced abnormal morphological features and after a short time showed a reduction in growth.  相似文献   

20.
Zelitch I 《Plant physiology》1989,90(4):1457-1464
Plants were obtained with novel O2-resistant photosynthetic characteristics. At low CO2 (250-350 μL CO2 L−1) and 30°C when O2 was increased from 1% to 21% to 42%, the ratio of net CO2 uptake in O2-resistant whole plants or leaf discs compared to wild type increased progressively, and this was not related to stomatal opening. Dihaploid plantlets regenerated from anther culture were initially screened and selected for O2-resistant growth in 42% O2/160 μL CO2 L−1 and 0.18% of the plantlets showed O2-resistant photosynthesis. About 30% of the progeny (6 of 19 plants) of the first selfing of a fertile plant derived from a resistant dihaploid plant had O2-resistant photosynthesis, and after a second selfing this increased to 50% (6 of 12 plants). In 21% O2 and low CO2, net photosynthesis of the resistant plants was about 15% greater on a leaf area basis than wild type. Net photosynthesis was compared in leaf discs at 30 and 38°C in 21% O2, and at the higher temperature O2-resistant plants showed still greater photosynthesis than wild type. The results suggest that the O2-resistant photosynthesis described here is associated with a decreased stoichiometry of CO2 release under conditions of rapid photorespiration. This view was supported by the finding that leaves of O2-resistant plants averaged 40% greater catalase activity than wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号