首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Active nonphosphorylated fructose bisphosphatase (EC 3.1.3.11) was purified from bakers' yeast. After chromatography on phosphocellulose, the enzyme appeared as a homogeneous protein as deduced from polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A Stokes radius of 44.5 A and molecular weight of 116,000 was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate resulted in three protein bands of Mr = 57,000, 40,000, and 31,000. Only one band of Mr = 57,000 was observed, when the single band of the enzyme obtained after polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate was eluted and then resubmitted to electrophoresis in the presence of sodium dodecyl sulfate. Amino acid analysis indicated 1030 residues/mol of enzyme including 12 cysteine moieties. The isoelectric point of the enzyme was estimated by gel electrofocusing to be around pH 5.5. The catalytic activity showed a maximum at pH 8.0; the specific activity at the standard pH of 7.0 was 46 units/mg of protein. Fructose 1,6-bisphosphatase b, the less active phosphorylated form of the enzyme, was purified from glucose inactivated yeast. This enzyme exhibited maximal activity at pH greater than or equal to 9.5; the specific activity measured at pH 7.0 was 25 units/mg of protein. The activity ratio, with 10 mM Mg2+ relative to 2 mM Mn2+, was 4.3 and 1.8 for fructose 1,6-bisphosphatase a and fructose 1,6-bisphosphatase b, respectively. Activity of fructose 1,6-bisphosphatase a was 50% inhibited by 0.2 microM fructose 2,6-bisphosphate or 50 microM AMP. Inhibition by fructose 2,6-bisphosphate as well as by AMP decreased with a more alkaline pH in a range between pH 6.5 and 9.0. The inhibition exerted by combinations of the two metabolites at pH 7.0 was synergistic.  相似文献   

2.
A Mg2+ dependent inorganic pyrophosphatase from chloroplasts of Sorghum vulgare has been purified 275-fold to electrophoretic purity with an overall recovery of about 25% activity. Estimations of native and monomeric relative molecular weights by size exclusion chromatography and denaturing electrophoresis suggest that the holoenzyme is a monomer of 42 +/- 1.5 kDa. A high specificity for tetrasodium pyrophosphate (PPi) as substrate has been observed, as the other phosphoesters tested were virtually unaffected. The Mg2+:PPi ratio of 5:1 at pH 8.0 shifts to 2.5:1.0 at pH 9.0 and 10:1 at pH 7.0. None of the divalent cations tested could substitute for Mg2+. Further, in the presence of Mg2+, these divalent cations inhibit the catalytic hydrolysis of PPi. EDTA rapidly and irreversibly inactivates the purified enzyme in a biphasic manner. Of the metabolites tested, Pi and L-malate significantly inhibited the catalytic activity of the enzyme. Malate inhibits the enzyme through an allosteric mechanism. A Hill plot of this inhibition shows that at least two molecules of malate bind to each molecule of the purified enzyme. The likely physiological significance of this result is discussed.  相似文献   

3.
Phosphofructokinase has been purified from pig kidney by extraction with phosphate buffer at pH 8, followed by alcohol treatment, affinity chromatography on matrix-bound Cibacron blue F3G-A, and gel chromatography on Sepharose 6B. Using sodium dodecyl sulphate electrophoresis the enzyme was found to be homogeneous and to have a specific activity of about 80 units/mg protein. Like other phosphofructokinases, at pH 7.0 the enzyme exhibits a sigmoidal dependence in its activity on the fructose 6-phosphate concentration and is strongly inhibited by ATP. The degree of citrate inhibition is influenced by the concentration of the two substrates. ATP strengthens and fructose 6-phosphate relieves the inhibition by citrate. AMP and cAMP are able to overcome the ATP inhibition. The ADP activation curve is biphasic. The molecular weight of the subunit of pig kidney phosphofructokinase was determined to be 88 000 by means of sodium dodecyl sulphate electrophoresis.  相似文献   

4.
Human liver extracts show two major bands with aldehyde dehydrogenase (Aldehyde:NAD+ oxidoreductase, EC 1.2.1.3) activity via starch gel electrophoresis at pH 7.0. Both bands have been purified to apparent homogeneity via classical chromatography combined with affinity chromatography on 5'-AMP-Sepharose 4B. The slower migrating band, enzyme 1, when assayed at pH 9.5 has a low Km for NAD (8 micrometer) and a high Km for acetaldehyde (approx. 0.1 mM). It is very strongly inhibited by disulfiram at pH 7.0 with a Ki of 0.2 micrometer. The faster migrating band, enzyme 2, has a low Km for acetaldehyde, (2--3 micrometer at pH 9.5), a higher Km for NAD (70 micrometer at pH 9.5), and is not inhibited by disulfiram at pH 7.0. The two enzymes are very similar to the F1 and F2 isozymes of horse liver purified by Eckfeldt et al. (Eckfeldt, J., Mope, L., Takio, K. and Yonetani, T. (1976) J. Biol, Chem. 251, 236-240) in molecular weight, subunit composition, amino acid composition and extinction coefficient. Preliminary kinetic characterizations of the enzyme are presented.  相似文献   

5.
P Nyrén  B F Nore  A Strid 《Biochemistry》1991,30(11):2883-2887
A new method has been developed for the isolation of the proton-pumping N,N'-dicyclohexylcarbodiimide-sensitive PPi synthase (H(+)-PPi synthase) from chromatophores of Rhodospirillum rubrum. The H(+)-PPi synthase was purified by extraction of chromatophores with a mixture of nonanoyl-N-methylglucamide and cholate, by fractionation with poly(ethylene glycol) 4000, hydroxyapatite chromatography, and affinity chromatography. The purified enzyme is homogeneous and has a specific activity of 20.4 mumol of PPi hydrolyzed min-1 mg-1 at pH 7.5 and 20 degrees C. The hydrolytic activity of the enzyme was stimulated by addition of phospholipids and Triton X-100. Of the lipids tested, cardiolipin proved to have the maximal activating effect. Reconstitution of the H(+)-PPi synthase by the freeze-thaw technique yielded an uncoupler-stimulated and N,N'-dicyclohexylcarbodiimide-sensitive PPi hydrolytic activity. The subunit composition of the purified H(+)-PPi synthase was investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. One band was obtained after silver staining with an apparent molecular weight of 56,000. The oligomeric structure of the H(+)-PPi synthase is discussed.  相似文献   

6.
Guanylyltransferase, an enzyme that catalyzes formation of mRNA 5'-terminal caps, was isolated from HeLa cell nuclei. The partially purified preparation, after incubation with [alpha-32P]GTP, yielded a single radiolabeled polypeptide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The guanylylated product was stable at neutral and alkaline pHs and had a pI of 4 by isoelectric focusing. An apparent molecular weight of approximately 68,000 was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. The formation of a covalently linked, radiolabeled GMP-protein complex and the associated release of PPi required the presence of [alpha-32P]GTP and divalent cations and incubation between pH 7 and 9. Reaction with [beta-32P]GTP, [alpha-32P]CTP, [alpha-32P]UTP, or [alpha-32P]ATP did not label the approximately 68,000-dalton polypeptide. Phosphoamide linkage of the GMP-enzyme complex was indicated by its sensitivity to cleavage by acidic hydroxylamine or HCl and not by NaOH or alkaline phosphatase. Both formation of the GMP-enzyme intermediate and synthesis of cap structures of type GpppApG from GTP and ppApG were remarkably temperature independent; the rates of enzyme activity at 0 to 4 degrees C were 30% or more of those obtained at 37 degrees C. Radiolabeled GMP-enzyme complex, isolated by heparin-Sepharose chromatography from reaction mixtures, functioned effectively as a GMP donor for cap synthesis with 5'-diphosphorylated oligo- and polynucleotide acceptors. Alternatively, protein-bound GMP could be transferred to PPi to form GTP. The formation of a guanylylated enzyme intermediate appears to be characteristic of viral and cellular guanylyltransferases that modify eucaryotic mRNA 5' termini.  相似文献   

7.
丙酮酸磷酸双激酶(pyruvate phosphate dikinase, PPDK; EC 2.7.9.1)能够可逆催化磷酸烯醇式丙酮酸(phosphoenolpyruvate, PEP)、单磷酸腺苷(adenosine monophosphate, AMP)和焦磷酸盐(pyrophosphate, PPi)生成三磷酸腺苷(adenosine triphosphate, ATP)、无机磷酸盐(orthophosphate, Pi)和丙酮酸(pyruvate).以热玫瑰小双孢菌基因组DNA为模板,PCR扩增得到了编码PPDK的基因,将此基因片段插入表达载体pET24a (+),在大肠杆菌中表达C端融合His-Tag的重组PPDK.与我们先前表达的N端融合His-Tag的PPDK相比,酶的活性提高了20倍,提示该酶的N端对活性十分重要.重组PPDK单体分子量为98 kD.经过镍亲和层析和超滤后,重组PPDK基本达到电泳纯.重组PPDK与荧光素酶偶联能够形成1个ATP-AMP循环反应,在该循环反应中,荧光素酶催化ATP生成的AMP和PPi能够被PPDK重新转化成ATP,产生一个持续稳定的信号.  相似文献   

8.
ATP硫酸化酶是一种催化ATP和SO42-反应生成腺嘌呤-5’-磷酸硫酸(APS)和焦磷酸盐(PPi)的酶,它是硫酸根同化反应第一步的关键酶。以嗜酸氧化亚铁硫杆菌(A.ferrooxidansATCC 23270)基因组为模板,用PCR扩增得到ATPS基因,并克隆到表达载体pLM1上。加入IPTG的诱导表达,用AKTA蛋白纯化仪的镍柱亲和层析纯化得到浓度和纯度都较高的ATPS蛋白。SDS-PAGE分析,证实其分子量大小为33 kD,并成功的测出了其活性,比活达3.0×103U/mg。  相似文献   

9.
Rat liver cytoplasmic tyrosine:tRNA ligase (tyrosine:tRNA ligase, EC 6.1.1.1) was purified by ultracentrifugation, DEAE-cellulose chromatography and repeated phosphocellulose chromatography by more than 1500-fold. The molecular weight of the enzyme was approx. 150 000 as determined by Sephadex G-200 gel filtration. On the basis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the enzyme consisted of two subunits, each of 68 000 daltons. We found the following Km values for the enzyme: 13 micrometer for tyrosine and 1.7 mM for ATP in the ATP:PPi exchange reaction and 13 micrometer for tyrosine, 210 micrometer for ATP and 0.14 micrometer for tRNATyr in the aminoacylation reaction. The rate of tyrosyl-tRNA synthesis was 50-fold lower than that of ATP:PPi exchange. Addition of a saturating amount of tRNA did not affect the rate of ATP:PPi exchange.  相似文献   

10.
Using an aqueous dispersion of [32P]phosphatidate as substrate we detected phosphatidate phosphatase (EC 3.1.3.4) activity in a cell-free extract of the yeast, Saccharomyces cerevisiae. The activity was found in both the membrane and the soluble fractions. The enzyme was purified from the soluble fraction about 600-fold. The purification procedure involved (NH4)2SO4 fractionation, poly(ethylene glycol) 6000 fractionation and column chromatography on DEAE-Sepharose, Sephadex G-100 and Blue-Sepharose. The purified enzyme almost absolutely required Mg2+ for activity. The molecular weight of the enzyme was estimated by analytical gel filtration on Sephadex G-100 to be approx. 75000. The enzyme was highly specific for phosphatidate. The apparent Km for phosphatidate was approx. 0.05 mM. The optimum pH was between 7.0 and 8.0.  相似文献   

11.
The benzyl 2-methyl-3-hydroxybutyrate dehydrogenase was purified from the cells of baker’s yeast by streptomycin treatment, Sephadex G-50 gel filtration, SP-Sephadex C-50 chromatography, and Toyopearl HW-60F gel filtration. The purified enzyme preparation was homogeneous and the molecular weight was about 31,000 to 32,000. The enzyme was NADPH-dependent and its maximum activity was at pH 7.0 and 45°C. It was stable between pH 6 and 9. The Km values at pH 7.0 were 0.42 mM for benzyl 2-methyl-3-oxobutyrate (1) and 4.2 mM for α-methyl β-hydroxy ester [syn-(2) and anti-(3)]. This enzyme reduced only benzyl 2-methyl-3-oxobutyrate (1) but had no effect on other synthetic substrates.

The reduced products [syn-(2) and anti(3)] produced by the purified enzyme were identified by 400 MHz NMR.  相似文献   

12.
Extracts from rat liver contain a sulfhydryl-dependent endoprotease which degrades [methyl-14C]globin or 125I-hemoglobin to acid-soluble peptides. This enzyme was isolated from the 100,000 x g supernatant of the homogenate. It showed a pH optimum between 7.5 and 9.5 and very little activity below pH 7.0. The enzyme has an apparent molecular weight of 550,000 as determined on Sepharose 6B column chromatography and sucrose density gradient centrifugation. ATP, at physiological concentrations, as well as pyrophosphate, stimulated the protease activity in these partially purified preparations up to 3-fold. Nonionic detergents such as Triton X-100 increased proteolytic activity and the stimulation by ATP. Other nucleotide triphosphates and ADP also increased proteolysis but less effectively than ATP. Sodium phosphate, creatine phosphate, and EDTA had no stimulatory effect.  相似文献   

13.
About 90% of the total hexokinase activity in rabbit brain was found to be associated with mitochondria while the remaining part was found in the cytosolic fraction. The soluble enzyme was purified 4,700-fold to near homogeneity by a combination of ion-exchange chromatography, dye-ligand chromatography and affinity chromatography. The purified enzyme showed a specific activity of 110 units/mg of protein and was obtained in 70% yield. The molecular weight of the purified hexokinase was found to be approximately 98,000 both for the native and the denatured enzyme. The isoelectric point, pI, was 6.2 pH units by isoelectric focusing and the enzyme was found to be able to phosphorylate several hexoses. Mg . ATP2-, among the nucleotide substrates, was the most effective phosphate donor. The properties of the purified cytoplasmatic hexokinase were compared with those of the solubilized mitochondrial enzyme. No significant differences were found in molecular weight, isoelectric point, pH dependence of activity, electrophoretic mobility and affinity for glucose and Mg.ATP2-. However, the temperature dependence of activity, and the specificity for several hexose substrates were markedly different.  相似文献   

14.
Purification and properties of hamamelosekinase   总被引:2,自引:0,他引:2  
Hamamelosekinase (ATP:hamamelose 2(1)-phosphotransferase) was purified from a crude extract of Kluyvera citrophila 627 (Enterobacteriaeceae) which has been grown on D-hamamelose. Ammonium-sulfate fractionation and twofold chromatography on DEAE-cellulose resulted in a 51-fold purification of the enzyme. Neither glucosekinase nor significant ATPase activity could be detected in the pure preparation. Besides D-hamamelose only D-hamamelitol was utilized as a substrate; however, the latter was phosphorylated at a very low rate. The molecular weight of the enzyme as estimated by gel chromatography is 21 000. The Km values for hamamelose and ATP were 3 mM nd 2.5 mM, respectively. The pH optimum was found at 7.5. In contrast to hexokinase, purified hamamelosekinase is very labile and could only be stabilized by addition of its substrate D-hamamelose. The most unusual property with respect to yeast hexokinase is a pronounced substrate inhibiton by hamamelose (> 5mM) and ATP (> 7mM), respectively, which could be interpreted as due to an economic utilization of the nutrient. Hamamelosekinase as well as glucosekinase are inducible by growing the microorganisms on the corresponding monosaccharides.  相似文献   

15.
A soluble inorganic pyrophosphatase from photolithoautotrophically grown Rhodopseudomonas palustris was purified to a state of apparent homogeneity applying high resolving liquid chromatography steps. Values of 65 500 and 64 500 were calculated for the relative molecular mass under non-dissociating conditions employing gel filtration and high-performance liquid chromatography, respectively. Dissociation sodium dodecyl sulfate gel electrophoresis resulted in a value of 32 000, indicating that the enzyme is composed of two subunits of equal molecular mass. Isoelectric focusing revealed a pI value of 4.7. The purified enzyme was specific for PPi and the activity was modified by divalent cations. Ca2+, Mn2+, Mg2+ and Co2+ were potent activators at a concentration ratio of [Me2+]/[PPi] less than 1. Ca2+ turned out to be the most potent activator. Free Me2+ was inhibitory on the PPiase activity. The (Me-PPi) complex is regarded as the functional substrate. Km and Ki values of the metal activation and inhibition were determined. An activation energy of Ea = 14.4 kJ/mol was derived from Arrhenius plots for the enzymatic reaction.  相似文献   

16.
An NAD-linked formate dehydrogenase (EC 1.2.1.2.) from methanol-grown Pichia pastoris NRRL Y-7556 has been purified. The purification procedure involved ammonium sulfate fractionation, hollow-fiber H1P10 filtration, ion-exchange chromatography, and gel filtration. Both dithiothreitol (10 mm) and glycerol (10%) were required for stability of the enzyme during purification. The final enzyme preparation was homogeneous as judged by polyacrylamide gel electrophoresis and by sedimentation pattern in an ultracentrifuge. The enzyme has a molecular weight of 94,000 and consists of two subunits of identical molecular weight. Formate dehydrogenase catalyzes specifically the oxidation of formate. No other compounds tested can replace NAD as the electron acceptor. The Michaelis constants were 0.14 mm for NAD and 16 mm for formate (pH 7.0, 25 °C). Optimum pH and temperature for formate dehydrogenase activity were around 6.5–7.5 and 20–25 °C, respectively. Amino acid composition of the enzyme was also studied. Antisera prepared against the purified enzyme from P. pastoris NRRL Y-7556 form precipitin bands with isofunctional enzymes from different strains of methanol-grown yeasts, but not bacteria, on immunodiffusion plates. Immunoglobulin fraction prepared against the enzyme from yeast strain Y-7556 inhibits the catalytic activity of the isofunctional enzymes from different strains of methanol-grown yeasts.  相似文献   

17.
The (Ca2+-Mg2+)-ATPase from human erythrocyte membranes has been solubilized in Triton X-100 and purified on a calmodulin affinity chromatography column in the presence of phosphatidylserine, to limit the inactivation of the enzyme. The enzyme was purified at least 150 times when compared with the original ghosts and showed a specific activity of 3.8 mumol.mg-1.min-1. In sodium dodecyl sulfate-polyacrylamide gels, a single major band was visible at a position corresponding to a molecular weight of about 125,000; a minor band (11% of the total protein) was present at a position corresponding to Mr = 205,000. Upon incubation of the purified preparation with [32P]ATP, both bands were phosphorylated in proportion to their mass, suggesting that both were active forms of purified ATPase.  相似文献   

18.
Spores of Clostridium perfringens contain at least two spore-lytic enzymes active in hydrolysing cortical peptidoglycan. One enzyme has been purified 1800-fold and has a molecular weight of 17 400 determined from chromatography on Sephadex G-75. Two protein bands were apparent after SDS-PAGE. The isolated enzyme was investigated for response to temperature, pH, ionic strength and enzyme inhibitors, and for mode of action. A second enzyme activity, differing from the first in apparent molecular weight (29 800) as determined by gel exclusion chromatography, and also in its pH optimum and activity on cortical substrate, was also isolated, although not purified to the same extent.  相似文献   

19.
cGMP-dependent protein kinase from bovine lung has been purified to homogeneity using 8-(2-aminoethyl)-amino adenosine 3':5'-monophosphate/Sepharose. Conditions for adsorption of holoenzyme to the affinity chromatography media followed by competitive ligand elution with cGMP have been determined. The holoenzyme of 150,000 molecular weight is composed of two 74,000 molecular weight subunits which are linked in part by disulfide bridges. Two moles of cGMP are bound per mol of holoenzyme compatible with 1 mol of cGMP/monomer. Dissociation of subunits does not occur upon cGMP binding and protein kinase activation. cGMP-dependent protein kinase has an isoelectric point of 5.4 and a Stokes radius of 50 A. The enzyme is asymmetric with an f/f0 of 1.42 and an axial ratio of 7.4. Determination of enzyme activity at varying concentrations of ATP revealed that cGMP increased the Vmax for ATP without significant effect on the Km. The purified enzyme was maximally active at 5 mM Mg2+; other divalent cations could not substitute for Mg2+. In the presence of Mg2+, strong inhibitory effects of other cations were observed with Mn2+, greater than Zn2+, greater than Co2+ greater than Ca2+. Although maximal cGMP-dependence was observed at pH 5.7 to 7.0, basal activity rose at higher pH values to approach activity observed with cGMP. A molecular model comparing cGMP-dependent protein kinase with cAMP-dependnet protein kinase is presented.  相似文献   

20.
A enzyme that catalyzed the specific formation of ascorbic acid-2-phosphate (AsA2P) from ascorbic acid (AsA) and adenosine-5′-triphosphate (ATP), was purified 3,200-fold to homogeneity from a cell extract of Pseudomonas azotocolligans. The purified enzyme appeared as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and consisted of a single polypeptide with a molecular weight of about 30,000. Of phosphoryl donors tested, p-nitrophenylphosphate (p-NPP) and pyrophosphate (PPi) were as effective as ATP. Optimal pHs for the phosphorylating activity were around 4.0 and 5.5 when PPi and ATP were used as phosphoryl donors, respectively. The Km for AsA was 147 mm. The enzyme activity was inhibited by Cu2+, but not by sulfhydryl reagents.

The enzyme simultaneously had phosphatase activity at weakly acidic or neutral pH and the Km for p-NPP in the phosphatase activity was 0.38 mm. The enzyme was tentatively named “ascorbic acid phosphorylating enzyme.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号