首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cystine reduction in Streptococcus agalactiae, resulting in sulfhydryl formation, may account for antagonism of the antibacterial effect of lactoperoxidase-thiocyanate-hydrogen peroxide when cystine is present in excess of the amount needed for maximum growth. Accumulation of cystine by S. agalactiae and its reduction to form sulfhydryl compounds were demonstrated. The reduction of cystine appeared to occur by a couple reaction between glutathione reductase and glutathione-disulfide transhydrogenase activity, both of which were found in the supernatant fraction from cell homogenates. NADPH-specific glutathione reductase activity was found in the pellet and supernatant fractions from cell homogenates. Two sulfhydryls were formed for each mole of NADPH used during cystine reduction. The information presented offers a plausible explanation of how cystine, when present in excess of growth needs, may be reduced to generate sulfhydryl compounds which neutralize the antibacterial effect of lactoperoxidase-thiocyanate-hydrogen peroxide on S. agalactiae.  相似文献   

2.
Organo-sulfur compounds favor the transition of mycelia of Histoplasma capsulatum to the yeast form (6, 8). Investigation of the role of cystine in the transition revealed that the two phases concentrated this amino acid at comparable rates and that mutants defective in the uptake of cystine were still able to undergo the transition normally. Uptake of cystine is therefore probably not a requirement for transition to or maintenance of the yeast phase. Both phases contained a reduced nicotinamide adenine dinucleotide phosphate-dependent glutathione reductase; but a reduced nicotinamide adenine dinucleotide-dependent cystine reductase was detectable only in the yeast phase. The cystine reductase appeared early in the transition of mycelium to yeast. Treatment of mycelia with p-chloromercuriphenylsulfonic acid, which prevented the transition to yeast, had no effect on cystine uptake but strongly inhibited the cystine reductase. These results suggest that cystine reductase may provide reduced sulfhydryl groups involved in the transition of mycelium to yeast.  相似文献   

3.
Disulfide reduction and sulfhydryl uptake by Streptococcus mutans   总被引:4,自引:0,他引:4       下载免费PDF全文
Incubation of Streptococcus mutans cells with certain disulfide compounds resulted in accumulation of reduced sulfhydryl compounds in the extracellular medium or in both the medium and the cells. Oxidized lipoic acid and lipoamide competed for reduction. At high concentrations, these compounds were reduced at rates comparable to that of glucose metabolism, and all of the increase in sulfhydryls was in the medium. Cystamine did not compete with these compounds for reduction but was also reduced at high rates and low apparent affinity, and all of the cysteamine produced from cystamine accumulated in the medium. In contrast, glutathione disulfide (GSSG) and L-cystine were reduced slowly but with high apparent affinity, and 60 to 80% of the increase in sulfhydryls was intracellular. NADH-dependent lipoic acid or lipoamide reductase activity was present in the particulate (wall-plus-membrane) fraction, whereas NADPH-dependent GSSG reductase activity was present in the soluble (cytoplasmic) fraction. Two transport systems for disulfide and sulfhydryl compounds were distinguished. GSSG, L-cystine, and reduced glutathione competed for uptake. L-Cysteine was taken up by a separate system that also accepted L-penicillamine and D-cysteine as substrates. Uptake of glutathione or L-cysteine, or the uptake and reduction of GSSG or L-cystine, resulted in up to a 10-fold increase in cell sulfhydryl content that raised intracellular concentrations to between 30 and 40 mM. These reductase and transport systems enable S. mutans cells to create a reducing environment in both the extracellular medium and the cytoplasm.  相似文献   

4.
Antibacterial activity of lactoperoxidase (LP)-thiocyanate (SCN)-hydrogen peroxide (H2O2) on Streptococcus agalactiae requires that the three reactants must be in contact with the cells simultaneously. Small but assayable amounts of LP adsorb to the cell surface and are not removed by washing. A diffusible antibacterial product of LP-SCN-H2O2 reaction was not found under our experimental conditions. Incubation of S. agalactiae cells with LP-H2O2 and 14C-labeled sodium SCN resulted in the incorporation of SCN into the bacterial protein. Most of the LP-catalyzed, incorporated SCN was released from the bacterial protein. Most of the LP-catalyzed, incorporated SCN was released from the bacterial protein with dithiothreitol. Cells that had their membrane permeability changed by treatment with Cetab or 80% ethanol incorporated more SCN than did untreated cells, i.e., approximately 1 mol of SCN for each mol of sulfhydryl group present in the reaction mixture. Alteration of membrane permeability caused protein sulfhydryls, normally protected by the cytoplasmic membrane, to become exposed to oxidation. The results suggest the LP-H2O2-catalyzed incorporation of SCN into the proteins of S. agalactiae by a mechanism similar to that reported for bovine serum albumin. Removal of reactive protein sulfhydryls from a functional role in membrane transport and in glucolysis in a likely cause of the antibacterial effect for S. agalactiae.  相似文献   

5.
S-Nitrosocompounds are formed when aqueous solutions of cysteine or glutathione are exposed to ultrasound (880 kHz) in air. The yield of the S-nitrosocompounds was as high as 10% for glutathione and 4% for cysteine of the initial thiol concentrations (from 0.1 to 10 mM) in the aqueous solutions. In addition to the formation of S-nitrosocompounds, thiol oxidation to disulfide forms was observed. After the oxidation of over 70% of the sulfhydryl groups, formation of peroxide compounds as well as cysteic acid derivatives was recorded. The formation of the peroxide compounds and peroxide radicals in the ultrasound field reduced the yield of S-nitrosocompounds. S-Nitrosocompounds were not formed when exposing low-molecular-weight thiols to ultrasound in atmospheres of N2 or CO. In neutral solutions, ultrasound-exposed cysteine or glutathione released NO due to spontaneous degradation of the S-nitrosocompounds. N2O3, produced due to the spontaneous degradation of the S-nitrosocompounds in air, nitrosylated sulfhydryl groups of glutathione manifested in the appearance of new absorption bands at 330 and 540 nm. The nitrogen compounds formed in an ultrasound field modified the sulfhydryl groups of apohemoglobin and serum albumin. The main target for ultrasound-generated oxygen free radicals were cystine residues oxidized to cysteic acid residues.  相似文献   

6.
Antibacterial activity of lactoperoxidase (LP)-thiocyanate (SCN)-hydrogen peroxide (H2O2) on Streptococcus agalactiae requires that the three reactants must be in contact with the cells simultaneously. Small but assayable amounts of LP adsorb to the cell surface and are not removed by washing. A diffusible antibacterial product of LP-SCN-H2O2 reaction was not found under our experimental conditions. Incubation of S. agalactiae cells with LP-H2O2 and 14C-labeled sodium SCN resulted in the incorporation of SCN into the bacterial protein. Most of the LP-catalyzed, incorporated SCN was released from the bacterial protein. Most of the LP-catalyzed, incorporated SCN was released from the bacterial protein with dithiothreitol. Cells that had their membrane permeability changed by treatment with Cetab or 80% ethanol incorporated more SCN than did untreated cells, i.e., approximately 1 mol of SCN for each mol of sulfhydryl group present in the reaction mixture. Alteration of membrane permeability caused protein sulfhydryls, normally protected by the cytoplasmic membrane, to become exposed to oxidation. The results suggest the LP-H2O2-catalyzed incorporation of SCN into the proteins of S. agalactiae by a mechanism similar to that reported for bovine serum albumin. Removal of reactive protein sulfhydryls from a functional role in membrane transport and in glucolysis in a likely cause of the antibacterial effect for S. agalactiae.  相似文献   

7.
Five cultures of Streptococcus agalactiae have an absolute requirement for L-cystine to grow in a chemically defined medium. The L-cystine could be replaced with cysteine, glutathione, or the disulfide form of glutathione. Dithiothreitol could not substitute for the sulfur-containing amino acids of glutathione; hence, the growth requirement appears to be truly nutritional. Growth was maximum with 4 to 5 mug of L-cystine per ml. If the concentration of L-cystine was no greater than 4 to 5 mug/ml, complete growth inhibition could be obtained by the addition of lactoperoxidase, thiocyanate, and H2O2. The growth inhibition, however, was nullified by additions of L-cystine 10-fold or more in excess of the concentration needed for maximum growth. During the aerobic degradation of glucose by cell suspensions, H2O2 accumulation could be shown with cultures 317 and 11-13, the only cultures the growth of which was inhibited without addition of exogenous H2O2. All of the cultures had varying degrees of peroxidase activity. The balance between H2O2 generation and peroxidase activity of the culture evidently determined whether growth could be inhibited with lactoperoxidase and thiocyanate without H2O2 addition. The growth yeilds per 0.5 mol of the disulfide forms (cystine and oxidized glutathione) were 1.5 and 1.9 times greater than that per 1 mol of the sulfhydryl forms (cysteine and glutathione).  相似文献   

8.
Both metalloprotein and flavin-linked sulfhydryl oxidases catalyze the oxidation of thiols to disulfides with the reduction of oxygen to hydrogen peroxide. Despite earlier suggestions for a role in protein disulfide bond formation, these enzymes have received comparatively little general attention. Chicken egg white sulfhydryl oxidase utilizes an internal redox-active cystine bridge and a FAD moiety in the oxidation of a range of small molecular weight thiols such as glutathione, cysteine, and dithiothreitol. The oxidase is shown here to exhibit a high catalytic activity toward a range of reduced peptides and proteins including insulin A and B chains, lysozyme, ovalbumin, riboflavin-binding protein, and RNase. Catalytic efficiencies are up to 100-fold higher than for reduced glutathione, with typical K(m) values of about 110-330 microM/protein thiol, compared with 20 mM for glutathione. RNase activity is not significantly recovered when the cysteine residues are rapidly oxidized by sulfhydryl oxidase, but activity is efficiently restored when protein disulfide isomerase is also present. Sulfhydryl oxidase can also oxidize reduced protein disulfide isomerase directly. These data show that sulfhydryl oxidase and protein disulfide isomerase can cooperate in vitro in the generation and rearrangement of native disulfide pairings. A possible role for the oxidase in the protein secretory pathway in vivo is discussed.  相似文献   

9.
Transport of 2-deoxyglucose or glucose in Streptococcus agalactiae was strongly inhibited if the cells were first exposed to a combination of lactoperoxidase-thiocyanate-hydrogen peroxide (LP-complex). The inhibition was completely reversible with dithiothreitol. N-ethylmaleimide and p-chloromercuribenzoate inhibited sugar transport, and the inhibition was also reversible with dithiothreitol. Sodium fluoride also inhibited sugar transport. Glucolysis was completely inhibited, and dithiothreitol completely reversed the inhibition. Phosphoenolpyruvate-dependent phosphotransferase activity in S. agalactiae was not strongly inhibited by the LP-complex. Interference of the entry of glucose into cells of S. agalactiae by the LP-complex could well account for its growth inhibitory properties with this organism. The inhibition of glucose transport by the LP-complex and its reversibility with dithiothreitol suggest the modification of functional sulfhydryl groups in the cell membrane as a cause of transport inhibition.  相似文献   

10.
Since selenium and vitamin E have been increasingly recognized as an essential element in biology and medicine, current research activities in the field of human medicine and nutrition are devoted to the possibilities of using these antioxidants for the prevention or treatment of many diseases. The present study was aimed at investigating and comparing the effects of dietary antioxidants on glutathione reductase and glutathione peroxidase activities as well as free and protein-bound sulfhydryl contents of rat liver and brain tissues. For 12–14 wk, both sex of weanling rats were fed a standardized selenium-deficient and vitamin E-deficient diet, a selenium-excess diet, or a control diet. It is observed that glutathione reductase and glutathione peroxidase activities of both tissues of the rats fed with a selenium-deficient or excess diet were significantly lower than the values of the control group. It is also shown that free and bound sulfhydryl concentrations of these tissues of both experimental groups were significantly lower than the control group. The percentage of glutathione reductase and glutathione peroxidase activities of the deficient group with respect to the control were 50% and 47% in liver and 66% and 61% in the brain, respectively; while these values in excess group were 51% and 69% in liver and 55% and 80% in brain, respectively. Free sulfhydryl contents of the tissues in both experimental groups showed a parallel decrease. Furthermore, the decrease in protein-bound sulfhydryl values of brain tissues were more pronounced than the values found for liver. It seems that not only liver but also the brain is an important target organ to the alteration in antioxidant system through either a deficiency of both selenium and vitamin E or an excess of selenium alone in the diet.  相似文献   

11.
Cell-free protein synthesis systems are powerful tools for protein expression, and allow large amounts of specific proteins to be obtained even if these proteins are detrimental to cell survival. In this report we describe the effect of cysteine on cell-free protein synthesis. The addition of cysteine caused a 2.7-fold increase in the level of synthesized glutathione S-transferase (GST). Moreover, the levels of sulfhydryl group reductants, including reduced glutathione and dithiothreitol (DTT), were increased 1.9- and 1.7-fold, respectively, whereas levels of the disulfide dimers, cystine and oxidized glutathione, were suppressed 87% and 66%, respectively. These trends were also observed for green fluorescent protein (GFP) expression. The addition of cysteine competitively reversed the inhibitory effect of cystine on protein expression. These results suggest that the sulfhydryl group in cysteine plays a crucial role in enhancing protein synthesis, and that the addition of excess cysteine could be a convenient and useful method for improving protein expression.  相似文献   

12.
M Russel  P Model    A Holmgren 《Journal of bacteriology》1990,172(4):1923-1929
We have shown previously that Escherichia coli cells constructed to lack both thioredoxin and glutaredoxin are not viable unless they also acquire an additional mutation, which we called X. Here we show that X is a cysA mutation. Our data suggest that the inviability of a trxA grx double mutant is due to the accumulation of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), an intermediate in the sulfate assimilation pathway. The presence of excess cystine at a concentration sufficient to repress the sulfate assimilation pathway obviates the need for an X mutation and prevents the lethality of a novel cys+ trxA grx double mutant designated strain A522. Mutations in genes required for PAPS synthesis (cysA or cysC) protect cells from the otherwise lethal effect of elimination of both thioredoxin and glutaredoxin even in the absence of excess cystine. Both thioredoxin and glutaredoxin have been shown to be hydrogen donors for PAPS reductase (cysH) in vitro (M. L.-S. Tsang, J. Bacteriol. 146:1059-1066, 1981), and one or the other of these compounds is presumably essential in vivo for growth on minimal medium containing sulfate as the sulfur source. The cells which lack both thioredoxin and glutaredoxin require cystine or glutathione for growth on minimal medium but maintain an active ribonucleotide reduction system. Thus, E. coli must contain a third hydrogen donor active with ribonucleotide reductase.  相似文献   

13.
The effect of 100 μM cobalt (Co) on plant growth and on biochemical parameters indicative of oxidative stress was investigated in a hydroponic experiment. The responses of antioxidant enzymes and compounds of the ascorbate–glutathione (AsA–GSH) cycle were also assessed on the hyperaccumulating plant, Indian mustard (Brasssica juncea L.). The effect of excess Co was associated with a significant increase in the levels of proline, carbonylated protein, malondialdehyde, superoxide anion (O 2 ·? ), and hydrogen peroxide (H2O2), and resulted in the accumulation of Co. Co toxicity was associated with an increase in the volume of palisade and spongy cells, and a reduction in the number of chloroplasts per cell. Co-induced cell death was characterized by DNA fragmentation and a 36 kDa DNase activity. Despite decreased catalase activity, peroxidase, superoxide dismutase, and AsA–GSH cycle-related enzymes including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase exhibited remarkable induction under Co stress. Furthermore, the contents of reduced and oxidized forms of ascorbate and glutathione were significantly increased with Co supplementation. Co treatment led to the activation of 44 and 46 kDa mitogen-activated protein kinase (MAPK) and indicated the role of the MAPK cascade in transducing Co-mediated signals. The present results suggest that excess Co reduces seedling growth by inducing oxidative stress related to lipid peroxidation and overproduction of O 2 ·? and H2O2. The stimulated activities of antioxidative enzymes and induction of MAPKs did not reverse the oxidative stress caused by Co-induced reactive oxygen species generation in Indian mustard seedlings.  相似文献   

14.
Both the lethal and the mutagenic actions of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on cells of Streptococcus pneumoniae were greatly potentiated by a component of yeast extract added to the cellular environment. This component was found to be an oxidation product of glutathione, glutathione disulfide (GSSG). At low concentrations in the medium, both GSSG and glutathione potentiated MNNG action, but at high concentrations, glutathione (and other sulfhydryl compounds) abolished the effect. Point mutations in a cellular gene conferred resistance to the potentiating effect, and they blocked uptake of either GSSG or glutathione into the cells as well. This gene apparently encodes a component of the system for glutathione transport in S. pneumoniae. The mechanism by which GSSG, an apparently innocuous substance in the environment, renders low levels of MNNG genotoxic and cytotoxic thus depends on its transport into the cell, where it is reduced by glutathione reductase and then activates intracellular MNNG. Also, it was observed that mutants of S. pneumoniae defective in DNA mismatch repair are more resistant to MNNG than are wild-type cells by a factor of 2.5.  相似文献   

15.
The effect of cystine in the cytotoxic response of cultured Chinese hamster ovary and Escherichia coli cells to challenge with hydrogen peroxide has been investigated. It was found that this amino acid could either protect or sensitize cells, depending on the cellular system. In fact, although a reduction in the growth-inhibitory effect of hydrogen peroxide was observed in mammalian cells, a marked increase in the susceptibility to oxidative stress was induced by cystine in bacteria. None of the amino acid precursors of glutathione, e.g., glutamate, glycine or cysteine, afforded protection in the mammalian cell system, whereas cysteine, but not glycine or glutamate, markedly sensitized bacteria to hydrogen peroxide-induced cell killing. In mammalian cells, methionine, an amino acid which is converted to cysteine, was also unable to modify the oxidative response. The results presented indicate that cystine displays differential effects in oxidatively injured mammalian or bacterial cells and suggest that the mechanism whereby the amino acid modulates the lethal action of hydrogen peroxide differs in the two cellular systems.  相似文献   

16.
Oxidative glutamate toxicity in the neuronal cell line HT22 is a model for cell death by oxidative stress, where an excess of extracellular glutamate inhibits import of cystine, a building block of the antioxidant glutathione. The subsequent decrease in glutathione then leads to the accumulation of reactive oxygen species (ROS) and programmed cell death. We used pharmacological compounds known to interact with heterotrimeric G-protein signalling and studied their effects on cell survival, morphology, and intracellular events that ultimately lead to cell death. Cholera toxin and phorbol esters were most effective and prevented cell death through independent pathways. Treating HT22 cells with cholera toxin attenuated the glutamate-induced accumulation of ROS and calcium influx. This was, at least in part, caused by an increase in glutathione due to improved uptake of cystine mediated by the induction of the glutamate/cystine-antiporter subunit xCT or, additionally, by the up-regulation of the antiapoptotic protein Bcl-2. Gs activation also protected HT22 cells from hydrogen peroxide or inhibition of glutathione synthesis by buthionine sulfoximine, and immature cortical neurones from oxidative glutamate toxicity. Thus, this pathway might be more generally implicated in protection from neuronal death by oxidative stress.  相似文献   

17.
Cystine markedly enhanced the cytotoxic response of Escherichia coli cells to concentrations of hydrogen peroxide resulting in mode one killing, but displayed little effect in mode two killed cells. The effect of cystine was concentration-dependent over a range of 5-50 μM and did not further increase at higher levels. Cystine had similar effects in other bacterial systems.

In order to sensitize the cells to the oxidative injury, the amino acid must be present during exposure to the oxidant since no enhancement of the cytotoxic response can be observed in cystine pre-loaded cells. In addition, no further enhancement of cytotoxicity could be detected when cystine was added before and left during challenge with the oxidant. The enhancing effect of cystine on oxidative injury of E. coli cells appears to be directly mediated by the amino acid and in fact cysteic acid, the most likely oxidation product, had no effect on the killing of bacterial cells elicited by hydrogen peroxide. Other disulfide compounds such as oxidized glutathione, cystamine and dithionitrobenzoic acid only slightly increased the susceptibility of bacteria to the oxidant. The effect of the disulfides was not concentration-dependent over a range of 200-800 μM and was statistically significant only for cystamine.

Taken together, these results indicate that cystine markedly increases the cytotoxic response of bacteria to hydrogen peroxide and suggest that the amino acid might impair the cellular defence machinery against hydrogen peroxide. This effect may involve a thiol-disulfide exchange reaction at the cell membrane level.  相似文献   

18.
H Chung  J Fried  J Jarabak 《Prostaglandins》1987,33(3):391-402
Oxidation of glutathione disulfide by a mixture of performic and hydrochloric acids leads to the formation of several compounds that are stronger inhibitors than glutathione disulfide of the placental enzyme that possess both NADP-linked 15-hydroxyprostaglandin dehydrogenase and 9-ketoprostaglandin reductase activities. The only one of these inhibitors that has been identified is glutathione thiosulfonate. The others are unstable and may include glutathione sulfinyl sulfone and glutathione disulfone. Since the enzyme appears to have a glutathione binding site in close proximity to its active site and glutathione thiosulfonate reacts with free sulfhydryl groups, the effects of this thiosulfonate on the enzyme were examined in more detail. Glutathione thiosulfonate and methyl methanethiosulfonate cause a time-dependent irreversible inhibition of both the hydroxyprostaglandin dehydrogenase and the ketoprostaglandin reductase activities, presumably by reacting with a free sulfhydryl at the prostaglandin binding site. Experiments with PGA1-glutathione show that this sulfhydryl is not necessary for the catalytic activity of the enzyme as long as the substrate can bind at the glutathione site.  相似文献   

19.
In frost-hardened spinach leaves ( Spinucea oleracea L. ev. Vroeg Reuzenblad ) an enhanced content of water-soluble non-protein sulfhydryl compounds was observed. The enhancement was due to higher levels of glutathione as well as to other non-protein-bound sulfhydryl compounds. In addition glutathione reductase activity was increased upon hardening. The affinity of the enzyme for oxidized glutathione was slightly lowered during hardening. The significance of glutathione accumulation during frost-hardening is discussed. Exposure of spinach to NaCl-stress did not affect the levels of glutathione and glutathione reductase of the leaves. In addition the kinetic properties of the enzyme remained unaltered by salinity. It is suggested that glutathione and glutathione reductase activity are not involved in adaptation of spinach to saline conditions.  相似文献   

20.
Superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities in pigmented and unpigmented liver tissues of frog and albino rat, respectively, were studied. Our results show that pigmented tissue is lacking in manganese superoxide dismutase activity and that the main enzymatic activity utilized in the cytosol by pigmented cells to reduce the hydrogen peroxide to water is represented by catalase; on the contrary, for the same reaction, the cells of albino rat liver primarily utilize the glutathione peroxidase activity. Both a low glutathione peroxidase activity and a low glutathione reductase activity were found in pigmented tissue of frog liver when compared with unpigmented tissue of rat liver. In light of our results, we also report a hypothetical interrelationship between melanin and reduced glutathione: We believe that in pigmented cells the melanin could act as a reducing physiological agent replacing the glutathione in the reduction of hydrogen peroxide. This reducing action of melanin could cause a diminished need for GSH and therefore could provoke the low glutathione peroxidase and reductase activities in pigmented tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号