首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction between endometrial stromal cells and extracellular matrix (ECM) components has a crucial role in the development of endometriosis. Endometrial stromal cells attach to the mesothelial surface of peritoneum by means of integrins during their initial implantation and growth in endometriosis. Similarly, interaction between integrin and the extracellular matrix is also crucial for the remodeling of the endometrium during early pregnancy. We hypothesized that adhesion of endometrial stromal cells to the extracellular matrix could suppress the immunologic reaction to implanting endometrial cells by inducing the expression of Fas ligand (FasL), a mediator of the apoptotic pathway. Western blot analysis of human endometrial stromal cells plated onto fibronectin, laminin, and collagen IV revealed higher levels of FasL protein expression compared with endometrial stromal cells that plated to BSA-coated plates (control). Immunocytochemistry results from endometrial stromal cells plated to extracellular matrix proteins demonstrated a similar up-regulation of FasL expression. Eutopic endometrial stromal cells from women with endometriosis demonstrated higher FasL expression on control plates and those coated with extracellular matrix proteins compared with those from women without endometriosis. Disruption of actin cytoskeleton in endometrial stromal cells by treatment with cytochalasin D blocked the increase of FasL protein expression that occurred in response to adhesion to the extracellular matrix. These results suggest that attachment of endometrial stromal cells during retrograde menstruation to a new environment such as peritoneum with increased expression of laminin, fibronectin, and collagen IV could lead to an increase in FasL expression. Induction of FasL expression by adhesion of endometrial stromal cells to the extracellular matrix may take part in the development of a relative immunotolerance by inducing apoptosis of cytotoxic T lymphocytes, which will allow further development of ectopic implants.  相似文献   

2.
Streptococcal fibronectin binding protein I (SfbI) mediates adherence to and invasion of Streptococcus pyogenes into human epithelial cells. In this study, we analysed the binding activity of distinct domains of SfbI protein towards its ligand, the extracellular matrix component fibronectin, as well as the biological implication of the binding events during the infection process. By using purified recombinant SfbI derivatives as well as in vivo expressed SfbI domains on the surface of heterologous organism Streptococcus gordonii , we were able to dissociate the two major streptococcal target domains on the human fibronectin molecule. The SfbI repeat region exclusively bound to the 30 kDa N-terminal fragment of fibronectin, whereas the SfbI spacer region exclusively bound to the 45 kDa collagen-binding fragment of fibronectin. In the case of native surface-expressed SfbI protein, an induced fit mode of bacteria–fibronectin interaction was identified. We demonstrate that binding of the 30 kDa fibronectin fragment to the repeat region of SfbI protein co-operatively activates the adjacent SfbI spacer domain to bind the 45 kDa fibronectin fragment. The biological consequence arising from this novel mode of fibronectin targeting was analysed in eukaryotic cell invasion assays. The repeat region of SfbI protein is mediating adherence and constitutes a prerequisite for subsequent invasion, whereas the SfbI spacer domain efficiently triggers the invasion process of streptococci into the eukaryotic cell. Thus, we were able to dissect bacterial adhesion from invasion by manipulating one protein. SfbI protein therefore represents a highly evolved prokaryotic molecule that exploits the host factor fibronectin not only for extracellular targeting but also for its subsequent activation that leads to efficient cellular invasion.  相似文献   

3.
Interaction of mesangial cells with extracellular matrix proteins can provide a means to modify cellular anchorage and traction through an interaction of integrins with activation of the actin cytoskeleton. We investigated intracellular signalling of matrix components fibronectin and laminin in mesangial cells in monolayer and 3-dimensional configurations to show a fibronectin-dependent activation of phosphatidylinositol-4-phosphate 5-kinase (up to threefold), which is augmented by a laminin-dependent increase in phospholipase D activity. Functional responsiveness to fibronectin and laminin addition was seen in the contraction of free-floating 3-dimensional mesangial cell-embedded collagen gels, a well-defined system reflecting coupling of extracellular matrix-cell events to activation of the actin cytoskeleton. Activation of phosphatidylinositol-4-phosphate 5-kinase and contraction of mesangial cell-embedded collagen gels in response to fibronectin and laminin were inhibited by pretreatment of mesangial cells with lovastatin and restored by isoprenoid augmentation with geranylgeraniol, supporting a role for the ras-related protein Rho in this process.  相似文献   

4.
Fibronectin is one of the main components of the extracellular matrix and associates with a variety of other matrix molecules including collagens. We demonstrate that the absence of secreted type VI collagen in cultured primary fibroblasts affects the arrangement of fibronectin in the extracellular matrix. We observed a fine network of collagen VI filaments and fibronectin fibrils in the extracellular matrix of normal murine and human fibroblasts. The two microfibrillar systems did not colocalize, but were interconnected at some discrete sites which could be revealed by immunoelectron microscopy. Direct interaction between collagen VI and fibronectin was also demonstrated by far western assay. When primary fibroblasts from Col6a1 null mutant mice were cultured, collagen VI was not detected in the extracellular matrix and a different pattern of fibronectin organization was observed, with fibrils running parallel to the long axis of the cells. Similarly, an abnormal fibronectin deposition was observed in fibroblasts from a patient affected by Bethlem myopathy, where collagen VI secretion was drastically reduced. The same pattern was also observed in normal fibroblasts after in vivo perturbation of collagen VI-fibronectin interaction with the 3C4 anti-collagen VI monoclonal antibody. Competition experiments with soluble peptides indicated that the organization of fibronectin in the extracellular matrix was impaired by added soluble collagen VI, but not by its triple helical (pepsin-resistant) fragments. These results indicate that collagen VI mediates the three-dimensional organization of fibronectin in the extracellular matrix of cultured fibroblasts.  相似文献   

5.
A simple adhesion assay was used to measure the interaction between rat oligodendrocytes and various substrata, including a matrix secreted by glial cells. Oligodendrocytes bound to surfaces coated with fibronectin, vitronectin and a protein component of the glial matrix. The binding of cells to all of these substrates was inhibited by a synthetic peptide (GRGDSP) modeled after the cell-binding domain of fibronectin. The component of the glial matrix responsible for the oligodendrocyte interaction is a protein which is either secreted by the glial cells or removed from serum by products of these cultures; serum alone does not promote adhesion to the same extent as the glial-derived matrix. The interaction of cells with this glial-derived matrix requires divalent cations and is not mediated by several known RGD-containing extracellular proteins, including fibronectin, vitronectin, thrombospondin, type I and type IV collagen, and tenascin.  相似文献   

6.
Previous work has shown that Trypanosoma cruzi extracellular amastigotes as well as metacyclic trypomastigotes infect cultured cells in a highly specific parasite form-cell type interaction. In this work we have investigated the mode of interaction of both forms with HeLa and Vero cells using scanning electron and confocal fluorescence microscopy. We examined the distribution of several host cell components as well as extracellular matrix elements during cell invasion by both T. cruzi infective forms. Scanning electron microscopy showed that membrane expansions formed during the invasion of cells by extracellular amastigotes. These expansions correspond to small cup-like structures in HeLa cells and are comparatively larger "crater"-like in Vero cells. We detected by confocal microscopy actin-rich structures associated with the internalisation of both infective forms of the parasite that correspond to the membrane expansions. Confocal fluorescence microscopy combining DIC images of cells labelled with monoclonal antibodies to phosphotyrosine, cytoskeletal elements, integrins, and extracellular matrix components revealed that some of the components like gelsolin and alpha-actinin accumulate in actin-rich structures formed in the invasion of amastigotes of both cell types. Others, like vinculin and alpha2 integrin may be present in these structures without evident accumulation. And finally, some actin-rich processes may be devoid of components like fibronectin or alphaV integrin. These studies provide evidence that the repertoire of host cell/extracellular matrix components that engage in the invasion process of T. cruzi forms is cell type- and parasite form-dependent.  相似文献   

7.
Specific antibodies to laminin, type IV collagen, basement-membrane proteoglycan, and fibronectin have been used in immunofluorescence microscopy to study the development of basement membranes of the embryonic kidney. Kidney tubules are known to form from the nephrogenic mesenchyme as a result of an inductive tissue interaction. This involves a change in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses fibronectin but no detectable laminin, type IV collagen, or basement-membrane proteoglycan. During the inductive interaction, basement-membrane specific components (laminin, type IV collagen, basement membrane proteoglycan) become detectable in the induced area, whereas fibronectin is lost. While the differentiation to epithelial cells of the kidney requires an inductive interaction, the development of the vasculature seems to involve an ingrowth of cells which throughout development deposits basement-membrane specific components, as well as fibronectin. These cells form the endothelium and possibly also the mesangium of the glomerulus, and contribute to the formation of the glomerular basement membrane. An analysis of differentiation of the kidney mesenchyme in vitro in the absence of circulation supports these conclusions. Because a continuity with vasculature is required for glomerular endothelial cell differentiation, it is possible that these cells are derived from outside vasculature.  相似文献   

8.
ABSTRACT. Acanthamoeba are free-living amoebae that are dispersed in most environments. Occasionally, Acanthamoeba cause serious human infections, such as keratitis and encephalitis. During the infection process, amoebic adhesion to, and degradation of, host cells and their extracellular matrix (ECM) appear to be important requirements. We examined the interaction of Acanthamoeba with the ECM, and related this event to host cell destruction and tissue invasion. Pathogenic Acanthamoeba culbertsoni differentially attached on the ECM glycoproteins laminin-1, collagen-I, and fibronectin, as compared with non-pathogenic Acanthamoeba astronyxis . Binding to collagen-I and laminin-1 induced A. culbertsoni to become flattened and elongated. Because attachment on laminin-1 was higher in A. culbertsoni , laminin-1 was chosen for further analysis. A 55-kDa laminin-binding protein was identified in pathogenic amoebae, but it was not found in non-pathogenic amoebae. No differential cytotoxicity against distinct cell types was observed between A. culbertsoni incubated with or without ECM. On the other hand, binding on collagen-I or matrigel scaffolds induced a differential effect where A. culbertsoni invaded collagen-I matrices more rapidly. These results indicate that ECM recognition, as an antecedent to tissue invasion, may be a trait characteristic of pathogenic Acanthamoeba .  相似文献   

9.
Campylobacter fetus is a recognized pathogen of cattle and sheep that can also infect humans. No adhesins specific for C. fetus have to date been identified; however, bacterial attachment is essential to establish an infecting population. Scanning electron microscopy revealed C. fetus attachment to the serosal surface of human colonic biopsy explants, a location consistent with the presence of the extracellular matrix (ECM). To determine whether the ECM mediated C. fetus adherence, 7 C. fetus strains were assessed in a solid-phase binding assay for their ability to bind to immobilized ECM components. Of the ECM components assayed, adherence to fibronectin was noted for all strains. Attachment to ECM components was neither correlated with S-layer expression nor with cell-surface hydrophobicity. Ligand immunoblots, however, identified the S-layer protein as a major site of fibronectin binding, and modified ECM binding assays revealed that soluble fibronectin significantly enhanced the attachment of S-layer-expressing C. fetus strains to other ECM components. Soluble fibronectin also increased C. fetus adherence to INT 407 cells. This adherence was inhibited when INT 407 cells were incubated with synthetic peptides containing an RGD sequence, indicating that integrin receptors were involved in fibronectin-mediated attachment. Together, this data suggests that C. fetus can bind to immobilized fibronectin and use soluble fibronectin to enhance attachment to other ECM components and intestinal epithelial cells. In vivo, fibronectin would promote bacterial adherence, thereby, contributing to the initial interaction of C. fetus with mucosal and submucosal surfaces.  相似文献   

10.
The interaction of cells with extracellular matrix components such as fibronectin, vitronectin, and type I collagen has been shown to be mediated through a family of cell-surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) amino acid sequence within each protein. Synthetic peptides containing the RGD sequence can inhibit these receptor-ligand interactions. Here, we use novel RGD-containing synthetic peptides with different inhibition properties to investigate the role of the various RGD receptors in tumor cell invasion. The RGD-containing peptides used include peptides that inhibit the attachment of cells to fibronectin and vitronectin, a peptide that inhibits attachment to fibronectin but not to vitronectin, a cyclic peptide with the opposite specificity, and a peptide, GRGDTP, that inhibits attachment to type I collagen in addition to inhibiting attachment to fibronectin and vitronectin. The penetration of two human melanoma cell lines and a glioblastoma cell line through the human amniotic basement membrane and its underlying stroma was inhibited by all of the RGD-containing peptides except for the one that inhibits only the vitronectin attachment. Various control peptides lacking RGD showed essentially no inhibition. This inhibitory effect on cell invasion was dose-dependent and nontoxic. A hexapeptide, GRGDTP, that inhibits the attachment of cells to type I collagen in addition to inhibiting fibronectin- and vitronectin-mediated attachment was more inhibitory than those RGD peptides that inhibit only fibronectin and vitronectin attachment. Analysis of the location of these cells that were prevented from invading indicated that they attached to the amniotic basement membrane but did not proceed further into the tissue. These results suggest that interactions between RGD-containing extracellular matrix adhesion proteins and cells are necessary for cell invasion through tissues and that fibronectin and type I collagen are important for this process.  相似文献   

11.
Self-assembling proteins that form crystalline surface layers on many microorganisms can be involved in bacterial-host adhesion via specific interactions with components of the extracellular matrix. Here, we describe the interaction of the Lactobacillus brevis ATCC 8287 surface-layer protein SlpA with fibronectin, laminin, fibrinogen and collagen using surface plasmon resonance. SlpA was found to interact with high affinity to fibronectin and laminin, with a respective binding constant of 89.8 and 26.7 nM. The interaction of SlpA with collagen and fibrinogen was found to be of much lower affinity, with respective binding constants of 31.8 and 26.1 microM. The serine protease inhibitor benzamidine greatly reduced the affinity of SlpA for fibronectin, whereas the affinity for laminin remained unaffected. No protease activity of the purified SlpA protein could be detected. These data suggest that L. brevis may interact with host cells directly through high affinity interactions with laminin and fibronectin predominantly, involving distinct regions of the SlpA protein.  相似文献   

12.
Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.  相似文献   

13.
Fibronectin, a 250-kDa eukaryotic extracellular matrix protein containing an RGD motif plays crucial roles in cell-cell communication, development, tissue homeostasis, and disease development. The highly complex fibrillar fibronectin meshwork orchestrates the functions of other extracellular matrix proteins, promoting cell adhesion, migration, and intracellular signaling. Here, we demonstrate that CagL, a 26-kDa protein of the gastric pathogen and type I carcinogen Helicobacter pylori, mimics fibronectin in various cellular functions. Like fibronectin, CagL contains a RGD motif and is located on the surface of the bacterial type IV secretion pili as previously shown. CagL binds to the integrin receptor α5β1 and mediates the injection of virulence factors into host target cells. We show that purified CagL alone can directly trigger intracellular signaling pathways upon contact with mammalian cells and can complement the spreading defect of fibronectin−/− knock-out cells in vitro. During interaction with various human and mouse cell lines, CagL mimics fibronectin in triggering cell spreading, focal adhesion formation, and activation of several tyrosine kinases in an RGD-dependent manner. Among the activated factors are the nonreceptor tyrosine kinases focal adhesion kinase and Src but also the epidermal growth factor receptor and epidermal growth factor receptor family member Her3/ErbB3. Interestingly, fibronectin activates a similar range of tyrosine kinases but not Her3/ErbB3. These findings suggest that the bacterial protein CagL not only exhibits functional mimicry with fibronectin but is also capable of activating fibronectin-independent signaling events. We thus postulate that CagL may contribute directly to H. pylori pathogenesis by promoting aberrant signaling cross-talk within host cells.  相似文献   

14.
Cell adhesion to the extracellular matrix inhibits apoptosis, but the molecular mechanisms underlying the signals transduced by different matrix components are not well understood. Here, we examined integrin-mediated antiapoptotic signals from laminin-10/11 in comparison with those from fibronectin, the best characterized extracellular adhesive ligand. We found that the activation of protein kinase B/Akt in cells adhering to laminin-10/11 can rescue cell apoptosis induced by serum removal. Consistent with this, wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, or ectopic expression of a dominant-negative mutant of Akt selectively accelerated cell death upon serum removal. In contrast to laminin-10/11, fibronectin rescued cells from serum depletion-induced apoptosis mainly through the extracellular signal-regulated kinase pathway. Cell survival on fibronectin but not laminin was significantly reduced by treatment with PD98059, a specific inhibitor of mitogen- or extracellular signal-regulated kinase kinase-1 (MEK1) and by expression of a dominant-negative mutant of MEK1. Laminin-10/11 was more potent than fibronectin in preventing apoptosis induced by serum depletion. These results, taken together, demonstrate laminin-10/11 potency as a survival factor and demonstrate that different extracellular matrix components can transduce distinct survival signals through preferential activation of subsets of multiple integrin-mediated signaling pathways.  相似文献   

15.
The extracellular matrix (ECM) is present within all animal tissues and organs. Actually, it surrounds the eukaryotic cells composing the four basic tissue types, i.e. epithelial, muscle, nerve and connective. ECM does not solely refer to connective tissue but composes all tissues where its composition, structure and organization vary from one tissue to another. Constituted of the four main fibrous proteins, i.e. collagen, fibronectin, laminin and elastin, ECM components form a highly structured and functional network via specific interactions. From the basement membrane to interstitial matrix, further heterogeneity exists in the organization of the ECM in various tissues and organs also depending on their physiological state. Back to a molecular level, bacterial proteins represent the most significant part of the microbial surface components recognizing adhesive matrix molecules (MSCRAMM). These cell surface proteins are secreted and localized differently in monoderm and diderm–LPS bacteria. While one collagen‐binding domain (CBD) and different fibronectin‐binding domains (FBD1 to 8) have been registered in databases, much remains to be learned on specific binding to other ECM proteins via single or supramolecular protein structures. Besides theinteraction of bacterial proteins with individual ECM components, this review aims at stressing the importance of fully considering the ECM at supramolecular, cellular, tissue and organ levels. This conceptual view should not be overlooked to rigorously comprehend the physiology of bacterial interaction from commensal to pathogenic species.  相似文献   

16.
The integrity of cohesive tissues strongly depends on the presence of the extracellular matrix, which provides support and anchorage for cells. The fibronectin protein and the heparin-like glycosaminoglycans are key components of this dynamic structural network. In this report, atomic force spectroscopy was used to gain insight into the compliance and the resistance of the fibronectin-heparin interaction. We found that this interaction can be described by an energetic barrier width of 3.1 ± 0.2 Å and an off-rate of 0.2 ± 0.1 s−1. These dissociation parameters are similar to those of other carbohydrate-protein interactions and to off-rate values reported for more complex interactions between cells and extracellular matrix components. Our results indicate that the function of the fibronectin-heparin interaction is supported by its capacity to sustain significant deformations and considerable external mechanical forces.  相似文献   

17.
The extracellular matrix of rat pheochromocytoma PC12 cells was shown by indirect immunofluorescence to consist of a network of fibronectin. The matrix did not contain laminin. The cells synthesized messenger RNA for fibronectin, laminin B2, and s-laminin but not for entactin or the B1 and A chains of laminin. Laminin B2 but not laminin B1 was detectable in the culture medium and in cell lysates. A full-length cDNA clone for the B1 chain of laminin was constructed in the plasmid p-444, which contains the neomycin-resistance marker and human beta-actin promoter. PC12 cells were transfected with this recombinant plasmid, and stable neomycin-resistant clones were isolated and characterized. Clones that synthesized laminin B1 messenger RNA were found to deposit a laminin-containing matrix. In many of these clones the deposition of the fibronectin matrix was greatly diminished. The laminin matrix was predominantly localized in the intercellular spaces forming a honeycomb pattern. The morphology of the laminin-synthesizing transfected cells was markedly different from the parental cells. The cells grew in tight clusters that were resistant to dissociating agents. It is concluded that the B1 chain of laminin contains information that is required for the formation of a stable laminin-containing extracellular matrix network either by interaction with cell surface receptors or other extracellular matrix components. Furthermore, expression of the laminin B1 gene may be a central regulatory point in determining extracellular matrix composition during embryogenesis.  相似文献   

18.
The platelet and extracellular matrix glycoprotein thrombospondin interacts with various types of cells as both a positive and negative modulator of cell adhesion, motility, and proliferation. These effects may be mediated by binding of thrombospondin to cell surface receptors or indirectly by binding to other extracellular matrix components. The role of peptide sequences from the type I repeats of thrombospondin in its interaction with fibronectin were investigated. Fibronectin bound specifically to the peptide Gly-Gly-Trp-Ser-His-Trp from the second type I repeat of thrombospondin but not to the corresponding peptides from the first or third repeats or flanking sequences from the second repeat. The two Trp residues and the His residue were essential for binding, and the two Gly residues enhanced the affinity of binding. Binding of the peptide and intact thrombospondin to fibronectin were inhibited by the gelatin-binding domain of fibronectin. The peptide specifically inhibited binding of fibronectin to gelatin or type I collagen and inhibited fibronectin-mediated adhesion of breast carcinoma and melanoma cells to gelatin or type I collagen substrates but not direct adhesion of the cells to fibronectin, which was inhibited by the peptide Gly-Arg-Gly-Asp-Ser. Thus, the fibronectin- binding thrombospondin peptide Gly-Gly-Trp-Ser-His-Trp is a selective inhibitor of fibronectin-mediated interactions of cells with collagen in the extracellular matrix.  相似文献   

19.
Previously, we characterized a 140-kDa protein from Entamoeba histolytica as a beta1-integrin-like molecule that binds fibronectin. In this work we present data showing that the amoebic receptor is associated with another surface molecule, the 220-kDa lectin, and with protein tyrosine kinase activity. By immunoprecipitation with the alphabeta1Eh antibody, we demonstrated by immune complex assays for tyrosine protein kinases that the amoebic fibronectin receptor was associated with two phosphorylated proteins of 50 and 70 kDa when internal membranes were used as the source of antigen. When cells were stimulated with fibronectin, two proteins of 55 and 90 kDa were tyrosine phosphorylated, as shown by Western blot with alphaPY20, its phosphorylation being time dependent after fibronectin stimulation. However, when the actin cytoskeleton of fibronectin-stimulated trophozoites was stabilized with phalloidin, the level and the pattern of phosphorylated proteins were different. In this case, a high-molecular-weight component, heavily phosphorylated, was present, which may include the 220-kDa lectin. We also present data confirming that the signaling pathway that is activated by fibronectin is specific. This was demonstrated by comparing the pattern of phosphoproteins obtained in immune complexes prepared with alphabeta1Eh, alphaL220, and alphaPY20 from total extracts obtained in the presence of phalloidin, from cells that had been exposed to fibronectin, soluble concanavalin A, or concanavalin-A-coated substrate. The presence of tyrosine kinases associated with the beta1-integrin-like amoebic molecule was confirmed by immunoprecipitation assays along with the combined use of a tyrosine kinase-specific substrate, the peptide RR-SRC, and a tyrosine kinase inhibitor, genistein.  相似文献   

20.
The deposition of fibronectin into the extracellular matrix is an integrin-dependent, multistep process that is tightly regulated in order to ensure controlled matrix deposition. Reduced fibronectin deposition has been associated with altered embryonic development, tumor cell invasion, and abnormal wound repair. In one of the initial steps of fibronectin matrix assembly, the amino-terminal region of fibronectin binds to cell surface receptors, termed matrix assembly sites. The present study was undertaken to investigate the role of extracellular signals in the regulation of fibronectin deposition. Our data indicate that the interaction of cells with the extracellular glycoprotein, vitronectin, specifically inhibits matrix assembly site expression and fibronectin deposition. The region of vitronectin responsible for the inhibition of fibronectin deposition was localized to the heparin-binding domain. Vitronectin's heparin-binding domain inhibited both beta(1) and non-beta(1) integrin-dependent matrix assembly site expression and could be overcome by treatment of cells with lysophosphatidic acid, an agent that promotes actin polymerization. The interaction of cells with the heparin-binding domain of vitronectin resulted in changes in actin microfilament organization and the subcellular distribution of the actin-associated proteins alpha-actinin and talin. These data suggest a mechanism whereby the heparin-binding domain of vitronectin regulates the deposition of fibronectin into the extracellular matrix through alterations in the organization of the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号