首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods that use high-throughput sequencing have begun to reveal features of the three-dimensional structure of genomes at a resolution that goes far beyond that of traditional microscopy. Integration of these methods with other molecular tools has advanced our knowledge of both global and local chromatin packing in plants, and has revealed how patterns of chromatin packing correlate with the genomic and epigenomic landscapes. This update reports recent progress made in this area in plants, and suggests new research directions.  相似文献   

2.
3.
药用植物内生真菌研究现状和发展趋势   总被引:2,自引:0,他引:2  
郭顺星 《菌物学报》2018,37(1):1-13
药用植物内生真菌普遍存在于健康植物组织和器官中,种类繁多,分布广泛。到目前为止,人们已从大量药用植物中分离出不同类型的内生真菌,这些植物广泛分布于除南极洲以外的各种陆地生态系统中。随着现代科学技术的迅速发展,药用植物内生真菌的研究也取得了长足的进步。由于内生真菌对于药用植物的重要性,其相关研究也受到了世界各国学者的高度关注。本文总结现阶段药用植物内生真菌相关研究,并对未来研究的发展趋势做出展望。  相似文献   

4.
Phylogeographic studies in plants: problems and prospects   总被引:33,自引:2,他引:31  
Genetic structuring of plant populations is strongly influenced by both common ancestry and current patterns of interpopulation genetic exchange. The interaction of these two forces is particularly confounding and hence interesting in plants. This complexity of plant genetic structures is due in part to a diversity of reproductive ecologies affecting genetic exchange and the fact that reproductive barriers are often weak between otherwise morphologically well-defined species. Phylogeographic methods provide a means of examining the history of genetic exchange among populations, with the potential to distinguish biogeographic patterns of genetic variation caused by gene flow from those caused by common ancestry. With regard to plants, phylogeography will be most useful when applied broadly across the entire spectrum of potential genetic exchange. Although current phylogeographic studies of plants show promise, widespread application of this approach has been hindered by a lack of appropriate molecular variation; this problem is discussed and possible solutions considered.  相似文献   

5.
6.
Lymphocyte homing: progress and prospects   总被引:5,自引:0,他引:5  
  相似文献   

7.
The overall architectural pattern of the mature plant is established during embryogenesis. Very little is known about the molecular processes that underlie embryo morphogenesis. Last decade has, nevertheless, seen a burst of information on the subject. The synchronous somatic embryogenesis system of carrot is largely being used as the experimental system. Information on the molecular regulation of embryogenesis obtained with carrot somatic embryos as well as observations on sandalwood embryogenic system developed in our laboratory are summarized in this review. The basic experimental strategy of molecular analysis mostly relied on a comparison between genes and proteins being expressed in embryogenic and non-embryogenic cells as well as in the different stages of embryogenesis. Events such as expression of totipotency of cells and establishment of polarity which are so critical for embryo development have been characterized using the strategy. Several genes have been identified and cloned from the carrot system. These include sequences that encode certain extracellular proteins (EPs) that influence cell proliferation and embryogenesis in specific ways and sequences of the abscisic acid (ABA) inducible late embryogenesis abundant (LEA) proteins which are most abundant and differentially expressed mRNAs in somatic embryos. That LEAs are expressed in the somatic embryos of a tree flora also is evidenced from studies on sandalwood. Several undescribed or novel sequences that are enhanced in embryos were identified. A sequence of this nature exists in sandalwood embryos was demonstrated using aCuscuta haustorial (organ-specific) cDNA probe. Somatic embryogenesis systems have been used to assess the expression of genes isolated from non-embryogenic tissues. Particular attention has been focused on both cell cycle and histone genes  相似文献   

8.
9.
Production-related petroleum microbiology: progress and prospects   总被引:1,自引:0,他引:1  
Microbial activity in oil reservoirs is common. Methanogenic consortia hydrolyze low molecular weight components to methane and CO2, transforming light oil to heavy oil to bitumen. The presence of sulfate in injection water causes sulfate-reducing bacteria to produce sulfide. This souring can be reversed by nitrate, stimulating nitrate-reducing bacteria. Removing biogenic sulfide is important, because it contributes to pitting corrosion and resulting pipeline failures. Increased water production eventually makes oil production uneconomic. Microbial fermentation products can lower oil viscosity or interfacial tension and produced biomass can block undesired flow paths to produce more oil. These biotechnologies benefit from increased understanding of reservoir microbial ecology through new sequence technologies and help to decrease the environmental impact of oil production.  相似文献   

10.
Modern human origins: progress and prospects   总被引:26,自引:0,他引:26  
The question of the mode of origin of modern humans (Homo sapiens) has dominated palaeoanthropological debate over the last decade. This review discusses the main models proposed to explain modern human origins, and examines relevant fossil evidence from Eurasia, Africa and Australasia. Archaeological and genetic data are also discussed, as well as problems with the concept of 'modernity' itself. It is concluded that a recent African origin can be supported for H. sapiens, morphologically, behaviourally and genetically, but that more evidence will be needed, both from Africa and elsewhere, before an absolute African origin for our species and its behavioural characteristics can be established and explained.  相似文献   

11.
The existence of gamma-tubulin was first reported approximately ten years ago, and it is appropriate to review the progress that has been made in gamma-tubulin research and to discuss some of the unanswered questions about gamma-tubulin function. gamma-Tubulin is ubiquitous in eukaryotes and is generally quite conserved. Two highly divergent gamma-tubulins have been discovered, however, one in Saccharomyces cerevisiae and one in Caenorhabditis elegans. Several organisms have two gamma-tubulin genes. In Drosophila melanogaster, the two gamma-tubulins differ significantly in sequence and expression pattern. In other organisms the two gamma-tubulins are almost identical and expression patterns have not been determined. gamma-Tubulin is located at microtubule organizing centers in many organisms, and it is also frequently associated with the mitotic spindle. gamma-Tubulin is essential for the formation of functional mitotic spindles in all organisms that have been examined to date. In animal cells, complexes containing gamma-tubulin are located at microtubule organizing centers where they nucleate the assembly of microtubules. In spite of the considerable progress that has been made in gamma-tubulin research important questions remain to be answered. The exact mechanisms of microtubule nucleation by gamma-tubulin complexes remain to be resolved as do the mechanisms by which microtubule nucleation from gamma-tubulin complexes is regulated. Finally, there is evidence that gamma-tubulin has important functions in addition to microtubule nucleation, and these functions are just beginning to be investigated.  相似文献   

12.
黑腹果蝇Drosophila melanogaster、家蚕Bombyx mori、意大利蜜蜂Apis mellifera和冈比亚按蚊Anopheles gambiae等昆虫的基因组测序已经基本完成,蛋白质组学技术将是阐明这些基因组功能的重要工具。本文综述了应用差异蛋白质组学技术在昆虫诱导性免疫、抗性机制和分子病理研究方面取得的一些成果:(1) 细菌、真菌、脂多糖或机械损伤诱导的昆虫血淋巴或血细胞来源细胞系的蛋白质表达的改变; (2) Bt抗性昆虫中肠刷状缘膜和抗锥虫采采蝇Glossina morsitans唾液腺多种蛋白质表达的改变; (3)化学农药处理和姬蜂Chelonus inanitus携带的多分DNA病毒引起的昆虫蛋白质组的变化。最后讨论了昆虫差异蛋白质组学研究的瓶颈与对策。  相似文献   

13.
Ion channels: recent progress and prospects   总被引:3,自引:0,他引:3  
Determination of the crystal structure of the KcsA potassium channel and its subsequent refinement at 2 A resolution have stimulated much interest in modelling of ion channels. Here we review the recent developments in ion channels research, focusing especially on the question of structure-function relationships, and discuss how permeation models based on Brownian and molecular dynamics simulations can be used fruitfully in this endeavour.  相似文献   

14.
The nonhuman primate is used extensively in biomedical research owing to its close similarities to human physiology and human disease pathophysiology. Recently, several groups have initiated efforts to genetically manipulate nonhuman primates to address complex questions concerning primate-specific development and physiological adaptation. Primates pose unique challenges to transgenesis and, although this field is still in its infancy, the potential for obtaining new insights into primate physiology and gene function is unprecedented. This review focuses on the methods and potential applications of genetically altered nonhuman primates in biomedical research.  相似文献   

15.
Recombinant DNA in filamentous fungi: progress and prospects   总被引:11,自引:0,他引:11  
Recombinant DNA technology enables the creation of well-defined alterations in the genetic material of an organism. Methods to manipulate recombinant DNA in the filamentous fungi (a group of microorganisms that includes species of academic as well as commercial interest) have recently been developed. This has been the result of adaptation of procedures successfully employed in the manipulation of other microorganisms. There are a number of similarities in the behavior of recombinant DNA in different fungi, but a number of differences have also been observed between the filamentous and the nonfilamentous fungi. Such differences include the ability to identify DNA replication origins and the host range of expression of fungal genes.  相似文献   

16.
Nitrogen assimilation in plants: current status and future prospects   总被引:1,自引:0,他引:1  
Nitrogen(N) is the driving force for crop yields; however, excessive N application in agriculture not only increases production cost, but also causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N use efficiency(NUE) and breeding crops with higher NUE is essential to tackle these problems. NUE of crops is determined by N uptake, transport, assimilation, and remobilization. In the process of N assimilation, nitrate reductase(NR), nitrite redu...  相似文献   

17.
Natural rubber (NR) is a nonfungible and valuable biopolymer, used to manufacture ~50 000 rubber products, including tires and medical gloves. Current production of NR is derived entirely from the para rubber tree (Hevea brasiliensis). The increasing demand for NR, coupled with limitations and vulnerability of H. brasiliensis production systems, has induced increasing interest among scientists and companies in potential alternative NR crops. Genetic/metabolic pathway engineering approaches, to generate NR‐enriched genotypes of alternative NR plants, are of great importance. However, although our knowledge of rubber biochemistry has significantly advanced, our current understanding of NR biosynthesis, the biosynthetic machinery and the molecular mechanisms involved remains incomplete. Two spatially separated metabolic pathways provide precursors for NR biosynthesis in plants and their genes and enzymes/complexes are quite well understood. In contrast, understanding of the proteins and genes involved in the final step(s)—the synthesis of the high molecular weight rubber polymer itself—is only now beginning to emerge. In this review, we provide a critical evaluation of recent research developments in NR biosynthesis, in vitro reconstitution, and the genetic and metabolic pathway engineering advances intended to improve NR content in plants, including H. brasiliensis, two other prospective alternative rubber crops, namely the rubber dandelion and guayule, and model species, such as lettuce. We describe a new model of the rubber transferase complex, which integrates these developments. In addition, we highlight the current challenges in NR biosynthesis research and future perspectives on metabolic pathway engineering of NR to speed alternative rubber crop commercial development.  相似文献   

18.
Carotenoids: recent progress, problems and prospects   总被引:1,自引:0,他引:1  
1. This is a review of the current state of research on the structure and functions of carotenoids, a common group of natural pigments. 2. Discussed in this paper are recent advances in carotenoid studies and problems that still await elucidation. 3. A new natural nomenclature is proposed to rationalize investigation of biological functions of carotenoids. 4. Data included in the paper are taken from the book, "Biological Functions of Carotenoids" (Karnaukhov, 1988).  相似文献   

19.
Sustainable agricultural practices in conjunction with ecological restoration methods can reduce the detrimental effects of agriculture. The Society for Ecological Restoration International has produced generic guidelines for conceiving, organizing, conducting and assessing ecological restoration projects. Additionally, there are now good conceptual frameworks, guidelines and practical methods for developing ecological restoration programmes that are based on sound ecological principles and supported by empirical evidence and modelling approaches. Restoration methods must also be technically achievable and socially acceptable and spread over a range of locations. It is important to reconcile differences between methods that favour conservation and those that favour economic returns, to ensure that conservation efforts are beneficial for both landowners and biodiversity. One option for this type of mutual benefit is the use of agri-environmental schemes to provide financial incentives to landholders in exchange for providing conservation services and other benefits. However, further work is required to define and measure the effectiveness of agri-environmental schemes. The broader potential for ecological restoration to improve the sustainability of agricultural production while conserving biodiversity in farmscapes and reducing external costs is high, but there is still much to learn, particularly for the most efficient use of agri-environmental schemes to change land use practice.  相似文献   

20.
The variability within and among ectomycorrhizal species provides a substantial genetic resource and the potential to increase forest productivity and environmental sustainability. Two parallel and interacting approaches, classical and molecular genetics, are being developed to acquire the genetic information underpinning selection of improved ectomycorrhizal strains. Determining the genetic traits of the fungi which contribute to symbiosis and plant function are being followed using natural variability combined with classical and molecular genetic manipulations. Classical and molecular manipulations for breeding rely on key information including sexual and parasexual reproduction, postmeiotic nuclear behaviour, mating-types and vegetative incompatibility mechanisms. Progress in the manipulation of genomes of ectomycorrhizal fungi will depend on efficient methods for gene cloning and DNA transformation. Gene transfer into fungal cells have been shown to be successful and include treatment of protoplasts and intact mycelium with naked DNA in the presence of polyvalent cations, electroporation, and microbombardment. The merits and limitations of these methods are discussed. Using this technology the expression of foreign DNA, the functional analysis of fungal DNA sequences, as well as molecular exploitation for commercial purposes can be carried out. This review concentrates on these aspects of fungal molecular biology and discusses the applications of the experimental systems that are currently available to ectomycorrhizal fungi. As it is essential to be able to define the traits which a breeder is seeking to improve, availability of genetically defined strains that are isogenic for a character or differ only in one character and a thorough knowledge of the biochemistry of the symbiosis will be necessary before any genetic manipulation be carried out. Genetic variability of ectomycorrhizal strains has been assessed by DNA fingerprinting. This approach allows the evaluation of DNA variability and the exchange of genetic information in natural populations, the identification of species and isolates by DNA polymorphisms, and tracking the environmental fate of the introduced fungi to determine their survival, growth, and dissemination within the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号