首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Reproduction of artificially selected near isogenic Meloidogyne incognita lineages virulent and avirulent against the Mi resistance gene of tomato was assessed on host and resistant lines and cultivars of pepper. Egg mass production following inoculation of individual potted seedlings with second-stage juveniles was studied in experiments conducted in controlled environment. Artificially selected Mi-virulent nematode populations were unable to develop on resistant pepper lines PM 217 and PM 687. This suggests that the genetic systems governing resistance to root-knot nematodes are differently expressed in tomato and pepper, in spite of the very close phylogenetic relationships and structural genomic homologies occurring between these two vegetable crops. Moreover, these artificially selected nematode populations were also found unable to develop on the susceptible pepper cultivars California Wonder and Doux Long des Landes, while their pathogenicity was not significantly affected on susceptible tomatoes. Due to the existence of naturally virulent Meloidogyne populations, these results enhance the need for a better understanding of the mechanisms involved, in order to develop new forms of management of plant resistance to root-knot nematodes.  相似文献   

2.
The PM687 line of Capsicum annuum L. has a single dominant gene, Me 3 , that confers heat-stable resistance to root-knot nematodes (RKN). Me 3 was mapped using doubled-haploid (DH) lines and F2 progeny from a cross between the susceptible cultivar ’Yolo Wonder’ (’YW’) and the highly resistant line ’PM687’. Bulked-segregant analysis with DNA pools, from susceptible or resistant DH lines, was performed to identify RAPD and AFLP markers linked to Me 3 . There was no polymorphism between bulks of ten DH lines using over 800 RADP primers (4,000 amplified fragments analysed). Using 512 AFLP primers (74,000 amplified fragments analysed), and bulked DNA templates from 20 resistant and 20 susceptible plants, we identified eight repulsion-phase and four coupling-phase markers linked to Me 3. Analysed in 103 DH progeny, they defined a 56.1-cM interval containing the target gene. The nearest were located 0.5, 1.0, 1.5 and 3.0 centimorgans (cM) on both sides of the gene. Analysis of the F2 progeny (162 plants) with the nearest coupling-phase marker confirmed its close position. Another resistance gene to RKN, present in ’PM687’ (Me 4 ), was shown to be linked to Me 3 , 10 cM from it. In order to localize Me 3 and Me 4 on our reference intraspecific pepper linkage map, two AFLP markers were mapped. The Me 3 nearest marker was 10.1cM from a RAPD marker named Q04_0.3 and 2.7cM from a RFLP marker named CT135. We investigated map-position orthologies between Me 3 and two other nematode resistance genes, the tomato Mi-3 and the potato Gpa 2 genes, which mapped in the telomeric region of the short arm of the tomato and potato chromosome 12 (or XII for potato). Received: 23 March 2000 / Accepted: 2 January 2001  相似文献   

3.
Prunus species express different ranges and levels of resistance to the root-knot nematodes (RKN) Meloidogyne spp. In Myrobalan plum (Prunus cerasifera), the dominant Ma gene confers a high-level and wide-spectrum resistance to the predominant RKN, Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica and the isolate Meloidogyne sp. Florida which overcomes the resistance of the Amygdalus sources. In Japanese plum (Prunus salicina), a similar wide-spectrum dominant resistance gene, termed R jap , has been hypothesized from an intraspecific segregating cross. In peach, two crosses segregating for resistance to both M. incognita and M. arenaria were used to identify single genes that each control both RKN species in the Shalil (R Mia557 ) and Nemared (R MiaNem ) sources. Localisation of these genes was made possible using the RFLP and SSR- saturated reference Prunus map T×E, combined with a BSA approach applied to some of the genes. The Ma1 allele carried by the Myrobalan plum accession P.2175 was localised on the linkage group 7 at an approximate distance of 2 cM from the SSR marker pchgms6. In the Japanese plum accession J.222, the gene R jap was mapped at the same position in co-segregation with the SSR markers pchgms6 and CPPCT022. The peach genes R Mia557 and R MiaNem , carried by two a priori unrelated resistance sources, were co-localized in a subtelomeric position on linkage group 2. This location was different from the more centromeric position previously proposed by Lu et al. (1999) for the resistance gene Mij to M. incognita and M. javanica in Nemared, near the SSR pchgms1 and the STS EAA/MCAT10. By contrast, R Mia557 and R MiaNem were flanked by STS markers obtained by Yamamoto and Hayashi (2002) for the resistance gene Mia to M. incognita in the Japanese peach source Juseitou. Concordant results for the three independent sources, Shalil, Nemared and Juseitou, suggest that these peach RKN sources share at least one major gene resistance to M. incognita located in this subtelomeric position. We showed that plum and peach genes are independent and, thus, can be pyramided into interspecific hybrid rootstocks based on the plum and peach species.Communicated by H.C. Becker  相似文献   

4.
Root-knot nematodes (Meloidogyne spp.) are a significant problem in potato (Solanum tuberosum) production. There is no potato cultivar with Meloidogyne resistance, even though resistance genes have been identified in wild potato species and were introgressed into breeding lines. The objectives of this study were to generate stable transgenic potato lines in a cv. Russet Burbank background that carry an RNA interference (RNAi) transgene capable of silencing the 16D10 Meloidogyne effector gene, and test for resistance against some of the most important root-knot nematode species affecting potato, i.e., M. arenaria, M. chitwoodi, M. hapla, M. incognita, and M. javanica. At 35 days after inoculation (DAI), the number of egg masses per plant was significantly reduced by 65% to 97% (P < 0.05) in the RNAi line compared to wild type and empty vector controls. The largest reduction was observed in M. hapla, whereas the smallest reduction occurred in M. javanica. Likewise, the number of eggs per plant was significantly reduced by 66% to 87% in M. arenaria and M. hapla, respectively, compared to wild type and empty vector controls (P < 0.05). Plant-mediated RNAi silencing of the 16D10 effector gene resulted in significant resistance against all of the root-knot nematode species tested, whereas RMc1(blb), the only known Meloidogyne resistance gene in potato, did not have a broad resistance effect. Silencing of 16D10 did not interfere with the attraction of M. incognita second-stage juveniles to roots, nor did it reduce root invasion.  相似文献   

5.
 The root-knot nematode heat-stable resistance locus from L. peruvianum LA2157 was mapped on chromosome 6. All wild tomato LA2157 entries and the LA2157 S1 progeny tested were resistant to Mi-avirulent Meloidogyne spp. isolates at 32°C, indicating that the self-compatible accession is homozygous for heat-stable nematode resistance. The novel resistance locus was mapped on a RFLP linkage map; this map was based on a segregating F2 population obtained from the interspecific F1 between L. esculentum cv ‘Solentos’ and L. peruvianum LA2157. The inheritance of the heat-stable resistance was evaluated in 100 F3 lines derived from one F1 interspecific hybrid. The genotype of the resistance locus of the individual F2 plants was based on the phenotypic classification of their F3 lines, and the data were used to map the resistance locus on the arm of chromosome 6 with the closest linkage to TG178. The position of the novel heat-stable resistance of LA2157 was localized in the resistance genes’ cluster close to the location of gene Mi-1. Cuttings of the F3 lines expressed resistance to Mi-1-avirulent M. incognita and M. javanica biotypes at 25°C and at 32°C (a temperature at which Mi-1 resistance is not expressed). There was no difference in the segregating population for expression of heat-unstable resistance and heat-stable resistance to Mi-1-avirulent Meloidogyne spp. However, LA2157 and cuttings of the above F3 lines were susceptible to a Mi-1-virulent M. incognita isolate at 30°C and to a M. hapla isolate at 25°C. Received: 6 July 1998 / Accepted: 28 July 1998  相似文献   

6.
The present study documents the root-knot nematodes (RKN) fauna of the Poonch division in Azad Jammu and Kashmir infecting vegetables. An overall prevalence of 40% of RKN was recorded. Of the four districts investigated, maximum prevalence was recorded in district Poonch with 59%, followed by Sudhnuti with 58%. The lowest prevalence of RKN was found in districts Bagh (29%) and Haveli (33%). Out of 15 vegetables investigated, RKN was found on five crops. The highest prevalence of 37.8% was recorded on okra, followed by 31.3% on cucumber and 17.5% on tomato. RKN was less prevalent on eggplant (8.3%) and beans (7.7%). Three RKN species, that is Meloidogyne incognita, Meloidogyne javanica and Meloidogyne arenaria, were found infecting the hosts. M. javanica was found to be the most prevalent followed by M. incognita and M. arenaria. This trend was found in all the districts. Overall prevalence of M. javanica as sole population was 9% and that of M. incognita was 2%. Meloidogyne arenaria was not found in any of the fields as sole population. The prevalence of M. incognita with M. javanica or M. arenaria as mixed populations was 8% and 5%, respectively, and that of M. javanica with M. arenaria was 4%. Similarly, all the three species prevailed as mixed populations in 12% of the fields in the division. The severity of RKN infections, measured as galling index, was found to be variable within each infected field (GI 2–9). Identification of RKN species was based on the morphology of perineal patterns and confirmed by molecular SCAR and CO1 makers based identification. In conclusion, RKN were distributed in the Poonch division and M. javanica was predominant. Cucumber, okra, tomato and eggplant were severely attacked by these nematodes warranting the adoption of stringent control strategies for their management.  相似文献   

7.
Host plant resistance is an important strategy for managing root-knot nematode (Meloidogyne incognita) in cotton (Gossypium L.). Here we report evidence for enhanced resistance in interspecific crosses resulting from transgressive segregation of clustered gene loci. Recently, a major gene, rkn1, on chromosome 11 for resistance to M. incognita in cv. Acala NemX was identified using an intraspecific G. hirsutum cross with susceptible cv. Acala SJ-2. Using interspecific crosses of Acala NemX × susceptible G. barbadense cv. Pima S-7, F1, F2, F2:3, backcross, and testcross Acala NemX × F1 (Pima S-7 × SJ-2), parental entries and populations were inoculated in greenhouse tests with M. incognita. Genetic analyses based on nematode-induced root galling and nematode egg production on roots, and molecular marker analysis of the segregating interspecific populations revealed that gene rkn1 interacted with a gene (designated as RKN2) in susceptible Pima S-7 to produce a highly resistant phenotype. RKN2 did not confer resistance in Pima S-7, but when combined with rkn1 (genotype Aa or aa), high levels of resistance were produced in the F1 and segregating F2, F3, and BC1F1 populations. One SSR marker MUCS088 was identified tightly linked to RKN2 within 4.4 cM in a NemX × F1 (Pima S-7 × SJ-2) testcross population. Using mapped SSR markers and interspecific segregating populations, MUCS088 linked to the transgressive gene from the susceptible parent and was located in the vicinity of rkn1 on chromosome 11. Diverse genome analyses among A and D genome diploid and tetraploid cottons revealed that marker MUCS088 (165 and 167 bp) is derived from G. arboreum, A2 diploid genome. These results demonstrated that a highly susceptible parent contributed to nematode resistance via transgressive segregation. Derived highly resistant lines can be used as improved resistance sources in cotton breeding, and MUCS088 can be used to monitor RKN2 introgression in diverse populations. The close genomic location of the transgressive resistance determinants provides an important model system for studying transgressive segregation and epistasis in plants.  相似文献   

8.
Meloidogyne incognita race 1, M. javanica, M. arenaria race 1, M. hapla, and an undescribed Meloidogyne sp. were analyzed by comparing isozyme phenotypes of esterase, malate dehydrogenase, phosphoglucomutase, isocitrate dehydrogenase, and α-glycerophosphate dehydrogenase. Isozyme phenotypes were obtained from single mature females by isoelectric focusing electrophoresis. Of these five isozymes, only esterase and phosphoglucomutase could be used to separate all five Meloidogyne spp.; however, the single esterase electromorphs were similar for M. incognita and M. hapla. Yet when both nematodes were run on the same gel, differences in their esterase phenotypes were detectable. Isozyme phenotypes from the other three isozymes revealed a great deal of similarity among M. incognita, M. javanica, M. arenaria, and the undescribed Meloidogyne sp.  相似文献   

9.
Prunus species express a more or less wide spectrum of resistance to root-knot nematodes (RKN) of the genus Meloidogyne. Among them, sources from Myrobalan plum (P. cerasifera) control all major and minor RKN species tested. In this outbreeding species, the clones P.2175 and P.2980 are heterozygous for the Ma single dominant gene and carry the alleles Ma1 and Ma3, respectively. Each allele confers a high-level resistance to the predominant RKN, M. arenaria, M. incognita and M. javanica and to the Florida isolate of an unknown Meloidogyne sp. which overcomes the resistance from peach and almond sources. The polymorphism of two coupling-phase SCAR markers tightly linked to Ma, SCAL19690 and SCAFLP2202, was evaluated within diverse diploid Prunus accessions. This material belongs to the subgenera Prunophora (Myrobalan and apricot) or Amygdalus (peach, almond and almond-peach) and includes the RKN resistance sources Nemared, Alnem 1 and GF.557. The alleles SCAL19690 and SCAFLP2202 were not present in three apricot cultivars (Moniqui, Luizet and Stark Early Orange) representative of the genetic diversity of this species and they segregated in an interspecific cross between P.2980 and apricot. These results suggest that apricot, reported as resistant to M. arenaria, M. incognita and M. javanica, and the Myrobalan plum might possess two different resistance systems. SCAL19690 and SCAFLP2202 were also absent from all tested Amygdalus material, whatever its resistance to RKN. Eight Myrobalan×Amygdalus segregating progenies including bispecific (P.2175 or P.2980×peach or almond) and trispecific (P.2175 or P.2980×almond-peach) hybrids were tested with the Florida isolate to identify individuals carrying the Ma resistance alleles. Both SCARs were then evaluated for segregation in these progenies to develop marker-assisted selection of Prunus interspecific rootstocks. SCAL19690 and SCAFLP2202 could be clearly detected and their tight linkage to Ma1 and Ma3 was confirmed. Consequently these SCARs appear to be powerful tools to screen for RKN resistance conferred by the Ma gene. They should also facilitate marker-assisted pyramiding of Ma with other resistance genes from the Amygdalus subgenus or from the botanically-related Armeniaca section.  相似文献   

10.
The Myrobalan plum, Prunus cerasifera, bears a complete-spectrum resistance to the root-knot nematodes (RKN) Meloidogyne spp. in comparison to the main resistance sources in Amygdalus rootstocks that have more restricted spectra, as evidenced by a differential resistance test based on the predominant species M. arenaria, M. incognita and M. javanica and the population M. sp. Floride. Resistance to M. arenaria (A) in Myrobalan plum is controlled by the Ma major resistance genes that are completely dominant and confer a non-host behaviour that totally prevents the multiplication of the nematode. The inheritance of resistance of this self-incompatible species to M. incognita (I), M. javanica (J) and the population M. sp. Floride (F), considered as belonging to a new RKN species, was studied using G1 hybrids from a diallel cross based on five parents, the two resistant P.2175 (Ma1 gene; heterozygous) and P.1079 (Ma2 gene; homozygous) and three host parents, P.2032, P.2646 and P.16.5 (recessive for both genes), completed with the G2 backcrosses P.16.5×(P.2646×P.1079), P.2646 ×(P.16.5×P.1079) and P.2175×(P.2646×P.1079). G1 and G2 clones obtained from softwood cuttings sampled from trees in the field experimental design, rooted in the nursery, and inoculated in containers (six replicates per clone) under greenhouse conditions, were simultaneously evaluated for their host suitability to two to four of the RKN species, based on a 0–5 gall index (GI) rating under a high and durable inoculum pressure of the nematode, and then classified into resistant (R; GI?0.2) or host (H; GI?1.3) classes. The resistance classification of each individual clone, evaluated to two (A/J: 319 clones), three (A/J/I: 249 clones) and four (A/J/I/F: 161 clones) RKN species, from segregating and non-segregating crosses involving either Ma1 or Ma2 or both or none, was identical whatever the species. The independence of the R/H classification from the tested RKN indicates that the Ma1 and Ma2 genes control resistance to all of them, and it is assumed that these genes also control resistance to other minor RKN species. The relationship of the Ma genes with the putative genes involved in Amygdalus sources is discussed with the objective of introducing them into new interspecific rootstocks expressing a complete-spectrum and high-level resistance.  相似文献   

11.
Rates of nematode penetration and the histopathology of root infections in fluecured tobacco cultivars ''McNair-944,'' ''Speight G-28,'' and ''NC-89'' with either Meloidogyne arenaria, M. incognita, M. hapla, or M. javanica were investigated. Penetration of root tips by juveniles of all species into the M. incognita-resistant NC-89 and G-28 was much less than that on the susceptible McNair-944. Few juveniles of M. incognita were detected in resistant cultivars 7 and 14 days after inoculation. Infection sites exhibited some cavities and extensive necrotic tissue at 14 days; less necrotic tissue and no intact nematodes were observed 35 days after inoculation. Although some females of M. arenaria reached maturity and produced eggs, considerable necrosis was induced in the resistant cultivars. Meloidogyne hapla and M. javanica developed on all cultivars, but there was necrotic tissue at some infection sites in the resistant cultivars. The occurrence of single multistructured nuclei in the syncytia of most M. hapla infections differed from the numerous small nuclei found in syncytia caused by the other three species.  相似文献   

12.
Plant-parasitic nematodes are a major pest of many plant species and cause global economic loss. A phytocystatin gene, Colocasia esculenta cysteine proteinase inhibitor (CeCPI), isolated from a local taro Kaosiang No. 1, and driven by a CaMV35S promoter was delivered into CLN2468D, a heat-tolerant cultivar of tomato (Solanum lycopersicum). When infected with Meloidogyne incognita, one of root-knot nematode (RKN) species, transgenic T1 lines overexpressing CeCPI suppressed gall formation as evidenced by a pronounced reduction in gall numbers. In comparison with wild-type plants, a much lower proportion of female nematodes without growth retardation was observed in transgenic plants. A decrease of RKN egg mass in transgenic plants indicated seriously impaired fecundity. Overexpression of CeCPI in transgenic tomato has inhibitory functions not only in the early RKN infection stage but also in the production of offspring, which may result from intervention in sex determination.  相似文献   

13.
In Prunus spp., resistance genes to root-knot nematodes (RKN), Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica, and Meloidogyne floridensis, confer either a complete spectrum, e.g., the Ma and Rjap genes in Myrobalan and Japanese plums (subgenus Prunophora), respectively, or a more restricted spectrum, e.g., the RMia gene (M. arenaria + M. incognita) in peach (subgenus Amygdalus). We report here characterization data of the RMja gene from the almond Alnem1, another Amygdalus source. The study of its spectrum is hampered by the inability of almond to be propagated by cuttings; we overcame this problem by using F1 and BC1 crosses with previously genotyped Myrobalan plums that conferred their rooting ability to hybrids for simultaneous evaluation to different RKN. As expected from a homozygous dominant resistance, BC1 progenies of Alnem1 segregated for resistance to M. javanica but were uniformly susceptible to M. incognita and M. floridensis, demonstrating that RMja controlled M. javanica but not M. incognita nor M. floridensis. SSR markers covering the Prunus reference map placed RMja on LG7 in the same region as Ma and Rjap and thus showed its independence from the RMia gene (LG2) of the botanically closer peach. The spectrum of this gene allows the theoretical construction of interspecific rootstocks, Myrobalan plum × (almond × peach), which cumulate RMja with Ma and RMia and are protected from each of the predominant RKN affecting Prunus, i.e., M. arenaria, M. incognita, and M. javanica, by at least two genes. This pyramiding strategy should offer to rootstock material an unprecedented guarantee of durable RKN resistance.  相似文献   

14.
15.
Sources of resistance in Prunus spp. exhibit different spectra to the root-knot nematodes (RKN) Meloidogyne incognita, Meloidogyne javanica and Meloidogyne floridensis. In this Prunus genus, two dominant genes, Ma with a complete spectrum from the heterozygous Myrobalan plums P.2175 and P.2980 (section Euprunus; subgenus Prunophora) and RMia with a more restricted spectrum from the peaches Nemared and Shalil (subgenus Amygdalus), have been identified. This study characterizes the resistance spectra of interspecific crosses involving (1) previous Myrobalan and peach sources, (2) two Alnem almonds (subgenus Amygdalus) resistant to M. javanica, and (3) the apricot A.3923, representing a species considered RKN-resistant (section Armeniaca; Prunophora). For both latter species, genetic data could be obtained through F1 crosses with genetically characterized Myrobalans that conferred their rooting ability for clonal multiplication of the hybrids and permitted their simultaneous evaluation to the three RKN. Crosses involving either Ma or RMia or both generated the expected resistance spectra. Nemared confirmed the species-specific resistance to M. incognita conferred by RMia. This rootstock, also previously considered resistant to M. javanica, was susceptible to the M. javanica isolate used, what illustrates an isolate-specific resistance to this species. Alnem accessions were shown homozygous resistant to M. javanica. In the progeny P.2980 × A.3923, Ma markers allowed to distinguish resistant individuals carrying that gene from resistant individuals lacking it. Distribution of non-Ma individuals in this cross suggested, in the apricot parent, (1) the absence of a major gene allelic to Ma and (2) the presence of a non RKN specific polygenic resistance.  相似文献   

16.
In a greenhouse pot experiment on the pathogenicity and interactions of Meloidogyne incognita, M. hapla and Pratylenchus brachyurus on four cultivars o f tobacco the cultivars ''Hicks'' and ''NC 2326'' were susceptible to each nematode and "NC 95'' and ''NC 2512'' resistant only to M. incognita.Mean heights of susceptible plants were depressed but fresh weight of tops did not differ significantly. Meloidogyne spp. increased fresh weight of susceptible (but not the resistant) roots.Reproduction of M. incognita was decreased in the presence of P. brachyurus in one case. M. hapla reproduction was less with either of the other nematodes in five out of eight cases. In 12 combinations involving P. brachyurus, reproduction of this species was depressed in seven, not affected in four and increased in one.Mechanisms involved in associative interactions were not identified but appeared to be indirect and to involve individual host-nematode responses.  相似文献   

17.
Root-knot nematode resistance of F₁ progeny of an intraspecific hybrid (Lycopersicon peruvianum var. glandulosum Acc. No. 126443 x L. peruvianum Acc. No. 270435), L. esculentum cv. Piersol (possessing resistance gene Mi), and L. esculentum cv. St. Pierre (susceptible) was compared. Resistance to 1) isolates of two Meloidogyne incognita populations artificially selected for parasitism on tomato plants possessing the Mi gene, 2) the wild type parent populations, 3) four naturally occurring resistance (Mi gene)-breaking populations of M. incognita, M. arenaria, and two undesignated Meloidogyne spp., and 4) a population of M. hapla was indexed by numbers of egg masses produced on root systems in a greenhouse experiment. Artificially selected M. incognita isolates reproduced abundantly on Piersol, but not (P = 0.01) on resistant F₁ hybrids. Thus, the gene(s) for resistance in the F₁ hybrid differs from the Mi gene in Piersol. Four naturally occurring resistance-breaking populations reproduced extensively on Piersol and on the F₁ hybrid, demonstrating ability to circumvent both types of resistance. Meloidogyne hapla reproduced on F₁ hybrid plants, but at significantly (P = 0.01) lower levels than on Piersol.  相似文献   

18.

Key message

The plant genetic background influences the efficiency of major resistance genes to root-knot nematodes in pepper and has to be considered in breeding strategies.

Abstract

Root-knot nematodes (RKNs), Meloidogyne spp., are extremely polyphagous plant parasites worldwide. Since the use of most chemical nematicides is being prohibited, genetic resistance is an efficient alternative way to protect crops against these pests. However, nematode populations proved able to breakdown plant resistance, and genetic resources in terms of resistance genes (R-genes) are limited. Sustainable management of these valuable resources is thus a key point of R-gene durability. In pepper, Me1 and Me3 are two dominant major R-genes, currently used in breeding programs to control M. arenaria, M. incognita and M. javanica, the three main RKN species. These two genes differ in the hypersensitive response induced by nematode infection. In this study, they were introgressed in either a susceptible or a partially resistant genetic background, in either homozygous or heterozygous allelic status. Challenging these genotypes with an avirulent M. incognita isolate demonstrated that (1) the efficiency of the R-genes in reducing the reproductive potential of RKNs is strongly affected by the plant genetic background, (2) the allelic status of the R-genes has no effect on nematode reproduction. These results highlight the primary importance of the choice of both the R-gene and the genetic background into which it is introgressed during the selection of new elite cultivars by plant breeders.  相似文献   

19.
The Cerrado biome represents a hotspot of biodiversity. Despite this, the nematofauna in this biome has not been well characterized, especially that related to root‐knot nematodes. This work aimed to identify Meloidogyne species present in different cerrado vegetations and to investigate potential hosts of Meloidogyne javanica in this biome. Soil samples (250) were collected in native areas of cerrado vegetation located at the National Park of Brasília (PNB) (125 samples) and Água Limpa Farm (FAL) (125 samples), and transferred to sterile pots. Single tomato plants cv. Santa Clara (susceptible) were transplanted into individual pots and maintained for 90 days under glasshouse. Females of Meloidogyne spp. were extracted from tomato roots and identified based upon esterase phenotypes and confirmed with PCR using specific sequence characterized amplified regions (SCAR) primers. Native plants were inoculated with 10 000 individuals (eggs + J2) of a pure culture of M. javanica and maintained under glasshouse for 6 months. From the 250 samples collected, 57 (22.8%) presented Meloidogyne spp. A total of 66 Meloidogyne populations were identified as follows: M. javanica (75.76%), M. incognita (10.60%), M. hapla (9.1%), M. morocciensis (3.03%) and M. arenaria (1.51%). The following esterase phenotypes were detected: M. javanica (J3 and J2), M. incognita (I1 and I2), M. hapla (H1), M. morocciensis (A3) and M. arenaria (A2). The SCAR primers incK14F/incK14R, Fjav/Rjav and Fh/Rh amplified specific fragments in M. incognita (399 bp), M. javanica (670 bp) and M. hapla (610 bp) and can be used for identification of indigenous Meloidogyne spp. from cerrado. The primer set Far/Rar is not specific for M. arenaria due to the amplification of DNA in M. morocciensis. Mimosa caesalpiniifolia was the only native plant in which M. javanica developed a high reproductive rate, and it is probably a host for this nematode in cerrado.  相似文献   

20.
Research was initiated to physically characterize the mitochondrial genomes of several Meloidogyne spp. and host-races, to address questions regarding their systematics and dispersal, and to assess the possibility of developing molecular diagnostics for these nematodes. Techniques were developed for purification and rapid detection of mitochondrial DNA from root-knot nematodes. Mitochondrial DNAs among Meloidogyne spp. were demonstrated to exhibit extensive divergence. The potential for using the rapidly diverging mitochondrial genomes as a diagnostic assay for M. incognita, M. hapla, M. arenaria, and M. javanica is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号