首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome c-dependent electron transfer and apoptosome activation require protein-protein binding, which are mainly directed by conformational and specific electrostatic interactions. Cytochrome c contains four highly conserved tyrosine residues, one internal (Tyr67), one intermediate (Tyr48), and two more accessible to the solvent (Tyr74 and Tyr97). Tyrosine nitration by biologically-relevant intermediates could influence cytochrome c structure and function. Herein, we analyzed the time course and site(s) of tyrosine nitration in horse cytochrome c by fluxes of peroxynitrite. Also, a method of purifying each (nitrated) cytochrome c product by cation-exchange HPLC was developed. A flux of peroxynitrite caused the time-dependent formation of different nitrated species, all less positively charged than the native form. At low accumulated doses of peroxynitrite, the main products were two mononitrated cytochrome c species at Tyr97 and Tyr74, as shown by peptide mapping and mass spectrometry analysis. At higher doses, all tyrosine residues in cytochrome c were nitrated, including dinitrated (i.e., Tyr97 and Tyr67 or Tyr74 and Tyr67) and trinitrated (i.e., Tyr97, Tyr74, and Tyr67) forms of the protein, with Tyr67 well represented in dinitrated species and Tyr48 being the least prone to nitration. All mono-, di-, and trinitrated cytochrome c species displayed an increased peroxidase activity. Nitrated cytochrome c in Tyr74 and Tyr67, and to a lesser extent in Tyr97, was unable to restore the respiratory function of cytochrome c-depleted mitochondria. The nitration pattern of cytochrome c in the presence of tetranitromethane (TNM) was comparable to that obtained with peroxynitrite, but with an increased relative nitration yield at Tyr67. The use of purified and well-characterized mono- and dinitrated cytochrome c species allows us to study the influence of nitration of specific tyrosines in cytochrome c functions. Moreover, identification of cytochrome c nitration sites in vivo may assist in unraveling the chemical nature of proximal reactive nitrogen species.  相似文献   

2.
Our previous investigation indicated that insulin can be nitrated by peroxynitrite in vitro. In this study, the preferential nitration site of the four tyrosine residues in insulin molecule was confirmed. Mononitrated and dinitrated insulins were purified by RP-HPLC. Following reduction of insulin disulfide bridges, Native-PAGE indicated that A-chain was preferentially nitrated. Combination of enzymatic digestion of mononitrated insulin with endoproteinase Glu-C, mass spectrometry confirmed that Tyr-A14 was the preferential nitration site when insulin was treated with peroxynitrite. Tyr-A19, maybe, was the next preferential nitration site. According to the crystal structure, Tyr-B26 between the two tyrosine residues in insulin B-chain was likely easier to be nitrated by peroxynitrite.  相似文献   

3.
The reaction of tetranitromethane with human chorionic gonadotropin and its subunits has been investigated. The hormone consists of two subunits, α and β, containing four and three tyrosyl residues, respectively. Introduction of 1 nitrated tyrosine residue into the native hormone was accompanied by a 20% loss in immunological reactivity and a 50% loss in biological activity. This initial reaction occurred at α Tyr-88 and/or α Tyr-89. Exhaustive nitration of the hormone modified α tyrosines 65, 88, and 89 and resulted in 75% inactivation biologically and 50% immunologically. Either nitrated α subunit obtained by dissociation of the nitrated hormone recombined with the native β subunit to give a hormone whose activity was in reasonable agreement with that of the corresponding nitrated monomer. These results indicate involvement of α Tyr-88 and/or α Tyr 89 in binding of the hormone to its receptor. These residues are not required for binding to the β subunit, however. Tyr-65 of the α subunit is probably not involved in binding to either the β subunit or the hormone receptor. The β subunit obtained from the exhaustively nitrated hormone was unmodified and recombined with native α to give fully active hormone. About 25% of the protein was recovered as polymeric material following nitration; lesser amounts of crosslinked monomer were formed. Both were biologically inactive. The polymer products retained about 30% of the native immunological competence.Nitration of the isolated α subunit fully converted the remaining tyrosine (Tyr-37) to 3-nitrotyrosine in a two-step reaction. The fully nitrated α subunit did not recombine well with the native β subunit and the recombinant hormone has 10% or less of the native activity. Involvement of α Tyr-37 in binding to the β subunit is suggested by these data. However, exposure of this residue by a conformational change in the α subunit after dissociation of the native hormone, while it seems unlikely in view of the high disulfide content, is also consistent with the data. Reaction of the free β subunit with tetranitromethane resulted in complete nitration of Tyr-37, 85% nitration of Tyr-59, and 25% nitration of Tyr-82. The nitrated β subunit did not recombine well with native α but the isolated recombinant had two-thirds of the native activity. From these data we conclude that β Tyr-37 and/or β Tyr-59 are possibly involved in binding to the α subunit but do not have a role in the biological activity. Tyr-82 of β is apparently not involved in either subunit interactions or hormone-receptor binding.  相似文献   

4.
The low-pK tyrosyl residue present in the heat-stable proteins (HPr) of all Gram-positive bacteria studied until now has been labeled by tetranitromethane in the HPr of Bacillus subtilis and Streptococcus faecalis. The nitrotyrosyl derivatives obtained are fully active in the complementation assay. The labeled tyrosyl residues could be identified as Tyr-37 in both proteins. Reinvestigation of the low-pK tyrosyl residue in HPr of Staphylococcus aureus resulted in the same assignment. In all three proteins an interaction between nitrotyrosine-37 and the active center His-15 could be observed, leading to an increase in the pK of His-15 and a change of its chemical shift parameters. The 1H NMR lines of the complete aromatic spin system of HPr of B. subtilis could be assigned by the nitration studies. Labeling of Arg-17 in HPr of S. aureus and S. faecalis by 1,2-cyclohexanedione in the presence of borate ions causes an almost complete inhibition of its enzymatic activity. In the NMR spectrum the labeling of the arginyl residue influences the resonance lines of His-15: two new resonance lines for the C-2 protons of equal intensity are observed, a fact that could be explained by two different conformations in slow exchange. The pK value of His-15 was not changed by the labeling, excluding Arg-17 as responsible for the low pK of His-15.  相似文献   

5.
L Cueni  J F Riordan 《Biochemistry》1978,17(10):1834-1842
Coupling of bovine carboxypeptidase A with diazotized 5-amino-1H-tetrazole increases esterase activity, decreases peptidase activity slightly, and modifies one tyrosyl residue. Subsequent nitration of the azoenzyme has no further effect on esterase activity, decreases peptidase activity markedly, and modifies a second tyrosyl residue. Analysis of the azopeptides isolated from a chymotrypsin digest of the doubly modified enzyme by affinity, ion exchange, and high pressure liquid chromatography indicates that the principal residue modified by diazo-1H-tetrazole is Tyr-248. Analysis of the nitropeptides isolated by similar procedures indicates that nitration occurs mainly at Tyr-198. This residue becomes susceptible to modification only as a consequence of a conformational change that accompanies azo coupling of Tyr-248. These results describe a unique example of the influence of protein structure on the reactivity of functional amino acid residues and illustrate an important aspect of chemical modification of enzymes.  相似文献   

6.
Cadmium-carboxypeptidase B was nitrated with tetranitromethane. The enzyme polymerized extensively during nitration. In the monomer nitrated Cd-carboxypeptidase B, 70% of the activity of Cd-carboxypeptidase B was retained. In order to identify the tyrosyl residues nitrated, the enzyme was digested with chymotrypsin and subtilisin and the nitrotyrosyl peptides were purified by affinity chromatography on antityrosyl-antibody-Sepharose conjugate followed by two-dimensional thin-layer chromatography. The major nitropeptides, representing 65% of the nitrotyrosyl label, were compatible with the segment of the sequence containing Tyr-240 and Tyr-259. Only 10% of the nitrotyrosyl label was found in the segment of Tyr-248. This indicates that the state of Tyr-248 in Cd-carboxypeptidase B differs from that in zinc-carboxypeptidase B where it shows chemical hyperreactivity due to its proximity to the metal ion.  相似文献   

7.
Tetranitromethane, C(NO2)4, a reagent for tyrosyl residues, was found to inactivate irreversibly rabbit skeletal muscle glycogen phosphorylase b. Under the chosen conditions seven tyrosyl residues, namely Tyr-75, 203, 262, 280, 403, 552 and 647, were found to be nitrated. Inactivation was prevented by the presence of the allosteric activator 5'-AMP during nitration. Under these latter conditions one of the reactive tyrosyl residues was not modified by C(NO2)4; thus, this residue appeared to be essential for either catalytic activity or allosteric activation. Tryptic digests of phosphorylase b, reacted with C(NO2)4 in the absence and presence of 5'AMP, were fractionated by gel filtration. The peptide mixtures were further purified by reverse-phase HPLC. One of the peptides contained the tyrosyl residue which was modified by C(NO2)4 only in the absence of 5'AMP. The sequence of this peptide was determined. The amino acid residue which is responsible for the loss of activity upon reaction with C(NO2)4 was identified in the amino acid sequence of phosphorylase b as tyrosine-75. Of the other residues modified in the presence and in the absence of C(NO2)4, tyrosine-403 contributes to the glycogen-storage site whereas Tyr-280 is close to the alpha-D-glucose-binding site. These residues, exposed to the solvent both in the presence and in the absence of 5'AMP, are not essential for catalytic activity.  相似文献   

8.
1. Five peptides containing tyrosine were converted to the 3-aminotyrosyl peptides by nitration with tetranitromethane and subseuqent reduction of the nitro groups to amino groups. The fluorescence of these aminotyrosyl residues was found to be quite similar to that of 3-aminotyrosine and it is concluded that the fluorescence is not sensitive to incorporation of the amino acid into the peptide chain. 2. Fluorescence of 3-aminotyrosine derivatives was sensitive, however, to the nature of the solvent; as the dielectric constant decreased, fluorescence was enhanced ten fold and the emission maximum shifted from the 350-370 nm value in aqueous solution to 320 nm. It is predicted that similar differences might be expected for exposed and buried aminotyrosyl residues in a protein. 3. Exposed tyrosyl residues on the helical protein tropomyosin and a helical segment of paramyosin were aminated in part (39% and 34% of the total tyrosyl residues, respectively). The fluorescence of the aminated tyrosyl residues on these proteins was similar to that of the aminotyrosyl peptides in an aqueous medium. Although the fluorescence efficiency of an aminotyrosyl residue was much lower than that of a tyrosyl residue, it was easy to distinguish the fluorescence of the aminotyrosyl residues (350-355 nm) on the protein from that arising from unmodified tyrosyl residues (305 nm).  相似文献   

9.
Nitration of tyrosine residues of alpha 1-proteinase inhibitor (alpha 1-PI) by tetranitromethane yielded a product that maintained its inhibitory activity against trypsin but lost most of its inhibitory activity against elastase. Chemical analysis of the product showed that four out of the six tyrosine residues in alpha 1-PI had been nitrated to various degrees: Tyr-38 and Tyr-297 were not nitrated, whereas Tyr-138, Tyr-160, Tyr-187 and Tyr-244 were nitrated to extents in the range 40-80%. We interpreted these data to mean that modification of these tyrosine residues decreased the association constant between alpha 1-PI and the proteinases and that the decrease differs from one proteinase to the other. When either alpha 1-PI-trypsin or alpha 1-PI-elastase complex was nitrated, nitration took place only to a very slight extent at these latter four tyrosine residues. On the other hand, Tyr-38 and Tyr-297 underwent nitration to about 20%. We concluded that Tyr-138, Tyr-160, Tyr-187 and Tyr-244 were located on the surface of alpha 1-PI that interacts with either trypsin or elastase in the formation of complexes, and were therefore protected from nitration.  相似文献   

10.
The nitration of the long form (N-terminal valine) of porcine pancreatic colipase with tetranitromethane was investigated under a variety of conditions. Fractionation of the nitrated monomers on DE-cellulose led to well-defined derivatives containing one, two and three nitrotyrosines per mol. Automated Edman degradation of the nitrated peptides, especially that of the staphylococcal proteinase peptide (49-64) showed that Tyr-54 was nitrated very fast under all conditions. This residue was the only one to be nitrated in water. Partial nitration of Tyr-59 was induced by bile salt micelles, while both Tyr-59 and Tyr-58 reacted extensively in the presence of lysophosphatidylcholine micelles (in which tetranitromethane is concentrated 150-fold compared to water) or of a liquid tetranitromethane-water interface. The strong negative Cotton effect at 410 nm which has already been observed using unfractionated preparations of nitrated colipase (Behnke W.D. (1982) Biochim. Biophys. Acta 708, 118-123) is linked with the nitration of Tyr-59 and it is markedly reduced by taurodeoxycholate micelles, suggesting a conformational change induced by the micelles in the tyrosine region. Moreover, the pKa of the nitrotyrosine residues in nitrated colipase is the same as that of free nitrotyrosine (pKa = 6.8) and it is shifted to 7.6 in the presence of taurodeoxycholate micelles. Micelles protected colipase against polymerization during nitration. These data suggest that Tyr-58 and Tyr-59 are part of the interface recognition site of colipase. The participation of Tyr-55 in binding is not excluded. The upwards nitrotyrosine pKa shift in the colipase micelle complex may explain why nitrated colipase can reactivate lipase in a triacylglycerol-taurodeoxycholate system at pH 7.5.  相似文献   

11.
The active tetrameric glucose dehydrogenase from Bacillus megaterium is rapidly inactivated upon reaction with tetranitromethane. The inactivation is correlated with the nitration of a single tyrosine residue/subunit. The nitration does not influence the dissociation-reassociation process of the enzyme. The inactivation is prevented by the presence of NAD, AMP, ATP. The sequence around the nitrated tyrosine residue was determined and the residue was identified as Tyr-254 in the covalent structure of the enzyme. After dissociation of the enzyme into its monomers two tyrosine residues become susceptible to nitration. The nitrated subunits are unable to reassociate to the tetramer. Isolation and sequence analysis of the peptides containing nitrotyrosine indicated that two different tyrosine residues are predominantly modified. One residue is Tyr-254 which is essential for the catalytic activity and the other one is Tyr-160 which seems to be located in the subunit binding area.  相似文献   

12.
The amino acid sequence of histidine-containing protein (HPr) from Streptococcus faecalis has been determined by direct Edman degradation of intact HPr and by amino acid sequence analysis of tryptic peptides, V8 proteolytic peptides, thermolytic peptides, and cyanogen bromide cleavage products. HPr from S. faecalis was found to contain 89 amino acid residues, corresponding to a molecular weight of 9438. The amino acid sequence of HPr from S. faecalis shows extended homology to the primary structure of HPr proteins from other bacteria. Besides the phosphoenolpyruvate-dependent phosphorylation of a histidyl residue in HPr, catalyzed by enzyme I of the bacterial phosphotransferase system, HPr was also found to be phosphorylated at a seryl residue in an ATP-dependent protein kinase catalyzed reaction [Deutscher, J., & Saier, M. H., Jr. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6790-6794]. The site of ATP-dependent phosphorylation in HPr of S. faecalis has now been determined. [32P]P-Ser-HPr was digested with three different proteases, and in each case, a single labeled peptide was isolated. Following digestion with subtilisin, we obtained a peptide with the sequence -(P)Ser-Ile-Met-. Using chymotrypsin, we isolated a peptide with the sequence -Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-Gly-Val-Met-. The longest labeled peptide was obtained with V8 staphylococcal protease. According to amino acid analysis, this peptide contained 36 out of the 89 amino acid residues of HPr. The following sequence of 12 amino acid residues of the V8 peptide was determined: -Tyr-Lys-Gly-Lys-Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Spectrophotometric titration of Formosan cobra cardiotoxin showed that two of the three tyrosyl residues were titrated freely with a normal apparent pKa of 9.6 whereas the remaining one ionized at pH above 11.0. Nitration of cardiotoxin in Tris . HCl buffer with tetranitromethane resulted in the selective nitration of tyrosine 11 and tyrosine 22. It also revealed that tyrosine 51 was the abnormal one in the spectrophotometric titration. Complete nitration occurred in the presence of 6.0 M guanidine hydrochloride. Compared with the conformation of native cardiotoxin, the peptide conformation of the partially nitrated cardiotoxin did not change significantly but the conformation of the completely nitrated cardiotoxin changed remarkably. The biological activity of cardiotoxin was indeed affected by nitration, but the immunological activity was nearly intact even when all the tyrosine residues were nitrated.  相似文献   

14.
Preparation of gene 32 protein containing perdeuterated tyrosyl and phenylalanyl residues has allowed the resolution of separate 1H NMR signals for the Tyr and Phe residues of the protein by NMR difference spectra. Upfield shifts in the chemical shifts of a number of aromatic protons previously observed to accompany deoxyoligonucleotide complex formation with gene 32 protein [Prigodich, R. V., Casas-Finet, J., Williams, K. R., Konigsberg, W., & Coleman, J. E. (1984) Biochemistry 23, 522-529] can be assigned to five Tyr and two Phe residues that must form part of the DNA binding domain. Site-directed mutation of Tyr-115 to Ser-115 results in the disappearance of a set of 2,6 and 3,5 tyrosyl protons that are among those moved upfield by oligonucleotide complex formation. These findings suggest that the amino acid sequence from Tyr-73 to Tyr-115 which contains six of the eight Tyr residues of the protein forms part of the DNA binding surface.  相似文献   

15.
The protein HPr is a low-molecular-weight phosphocarrier protein of the bacterial phosphoenolpyruvate:glycose phosphotransferase system. We have recently reported the complete primary amino acid sequence of HPr isolated from Salmonella typhimurium (Weigel, N., Powers, D.A., and Roseman, S. (1982) J. Biol. Chem. 257, 14499-14509). This sequence is incorrect at certain residues; the correct primary structure of the protein is presented in this report. The corrected structure generally agrees with the primary sequence predicted for HPr from Escherichia coli (based on the nucleotide sequence of the corresponding ptsH gene). The one apparent ambiguity is at the carboxyl terminus.  相似文献   

16.
We recently reported that apolipoprotein A-I (apoA-I), the major protein component of high density lipoprotein, is a selective target for myeloperoxidase (MPO)-catalyzed nitration and chlorination in both and serum of subjects with cardiovascular disease. We further showed that the extent of both apoA-I nitration and chlorination correlated with functional impairment in reverse cholesterol transport activity of the isolated lipoprotein. Herein we used tandem mass spectrometry to map the sites of MPO-mediated apoA-I nitration and chlorination in vitro and in vivo and to relate the degree of site-specific modifications to loss of apoA-I lipid binding and cholesterol efflux functions. Of the seven tyrosine residues in apoA-I, Tyr-192, Tyr-166, Tyr-236, and Tyr-29 were nitrated and chlorinated in MPO-mediated reactions. Site-specific liquid chromatography-mass spectrometry quantitative analyses demonstrated that the favored modification site following exposure to MPO-generated oxidants is Tyr-192. MPO-dependent nitration and chlorination both proceed with Tyr-166 as a secondary site and with Tyr-236 and Tyr-29 modified only minimally. Parallel functional studies demonstrated dose-dependent losses of ABCA1-dependent cholesterol acceptor and lipid binding activities with apoA-I modification by MPO. Finally tandem mass spectrometry analyses showed that apoA-I in human atherosclerotic tissue is nitrated at the MPO-preferred sites, Tyr-192 and Tyr-166. The present studies suggest that site-specific modifications of apoA-I by MPO are associated with impaired lipid binding and ABCA1-dependent cholesterol acceptor functions, providing a molecular mechanism that likely contributes to the clinical link between MPO levels and cardiovascular disease risk.  相似文献   

17.
Nitric oxide is an important mediator that participates in reduction-oxidation (redox) mechanisms and in cellular signal transduction pathways. Two types of post-translational modifications are induced by nitric oxide: S-nitrosylation of cysteine residues and nitration of tyrosine residues. Two-dimensional gel electrophoresis-based Western blotting was used to detect, and liquid chromatography (LC)-tandem mass spectrometry (MS/MS) to determine the amino acid sequence of, several different nitrated proteins in the human pituitary. Proteins from several 2D gel spots, which corresponded to the strongly positive anti-nitrotyrosine Western blot spots, were subjected to in-gel trypsin-digestion and LC-MS/MS analysis. MS/MS, SEQUEST analysis, and de novo sequencing were used to determine the nitration site of each nitrated peptide. A total of four different nitrated peptides were characterized and were matched to four different proteins: synaptosomal-associated protein, actin, immunoglobulin alpha Fc receptor, and cGMP-dependent protein kinase 2. Those nitrotyrosyl-proteins participate in neurotransmission, cellular immunity, and cellular structure and mobility.  相似文献   

18.
The tyrosine residues of lambda cro repressor were partially nitrated with tetranitromethane under mild conditions. After digestion by Achromobacter protease I, the extent of nitration was determined by HPLC and amino acid analysis. Tyr 26 was most easily nitrated and Tyr 51 followed it. Tyr 10 was resistant to nitration. By comparison of the proton magnetic resonance spectrum of the partially nitrated cro protein with the above result, the aromatic proton resonances of the tyrosine side chains could be assigned to individual tyrosine residues. The extent of nitration is parallel to the accessibility to a flavin dye as measured by photo CIDNP (chemically induced dynamic nuclear polarization).  相似文献   

19.
Incubation of right-side-out oriented membrane vesicles of Escherichia coli with tetranitromethane resulted in the nitration of tyrosine residues (Tyr-10 and Tyr-73) of subunit c from the ATP synthase. Cleavage of the protein with cyanogen bromide and separation of the resulting fragments, especially of the tyrosine-containing peptides, clearly demonstrated that the distribution of the nitro groups is similar at any time and at any pH value chosen for the analysis. Furthermore, the percentage of 3-nitrotyrosine present in the two peptide fragments was in good agreement with that obtained for the intact polypeptide chain. While the modification of the tyrosine residues in subunit c with the lipophilic tetranitromethane is independent of the orientation of the membrane vesicles, the subsequent partial conversion of the 3-nitrotyrosine to the amino form only occurred when membrane vesicles with right-side-out orientation were treated with the ionic, water-soluble sodium dithionite, which at certain concentrations cannot penetrate biological membranes. Cleavage of subunit c isolated from nitrated and subsequently reduced membrane vesicles and separation of the resulting fragments by high-pressure liquid chromatography showed that the 3-nitrotyrosine in the Tyr-73-containing peptides has been completely reduced, while the nitro group in peptides containing Tyr-10 remained nearly unaffected.  相似文献   

20.
Tetranitromethane reaction with intact ovine lutropin and its isolated subunits was studied using spectrophotometric measurements, amino acid analysis, and isolation of tyrosyl peptides. Tyrosyl residues in the beta subunit (beta37, beta59) did not react with tetranitromethane in the intact hormone, but were nitrated in the isolated subunit. The sequence and extent of reaction of tetranitromethane with the tyrosyl residues in the alpha subunit was alpha21 = alpha92 = alpha93 (in intact hormone or isolated subunit) greater than alpha 41 (reacted in isolated subunit only) greater than alpha 30 (reacted in isolated subunit in 8 M urea only). Polymerization was observed as a side reaction in agreement with previous studies. The degree of polymerization appeared to be related to both primary sequence and tertiary structure, and for lutropin had the relation: alpha subunit (93% polymerized) greater than intact hormone greater than beta subunit (less than 40%). Polymerization observed with vasopressin was significantly greater than with oxytocin; for these peptides the tyrosine residues in the monomeric product were converted to 3-nitrotyrosine. Neither 3-nitrotyrosine nor tyrosine was detected in the polymerized by-products. In the tetranitromethane reaction with intact ovine lutropin, other reaction products charcterized by absorption spectra were found. Peptides isolated from these products lacked the characteristic 428 nm abosrption maxima of 3-nitrotyrosyl peptides and showed instead absorption in the 310 to 350 nm region. Similar products from tetranitromethane reactions with di- and tripeptides containing tyrosine have been observed previously (Boyd, N.D., and Smith, D.B. (1971) Can. J. Biochem, 49, 154-161), but they have not been studied in proteins. A possible relationship to the polymerization side reaction is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号