首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W Jordi  B de Kruijff  D Marsh 《Biochemistry》1989,28(23):8998-9005
The contribution of the various regions of the mitochondrial precursor protein apocytochrome c to the interaction of the protein with phosphatidylserine dispersions has been studied with chemically and enzymatically prepared fragments of horse heart apocytochrome c and phospholipids spin-labeled at different positions of the sn-2 chain. Three amino-terminal heme-less peptides, two heme-containing amino-terminal fragments, one central fragment, and three carboxy-terminal fragments were studied. The electron spin resonance spectra of phospholipids spin-labeled at the C5 position of the fatty acid chain indicate that both amino-terminal and carboxy-terminal fragments of the apocytochrome c molecule cause a restriction of motion of the lipids, whereas the heme-containing peptides and protein have less effect. In addition, a second motionally more restricted lipid component, which is observed for apocytochrome c interacting with phosphatidylserine dispersions containing lipids spin-labeled at the C12 or C14 position [G?rrissen, H., Marsh, D., Rietveld, A., & de Kruijff, B. (1986) Biochemistry 25, 2904-2910], was observed both on binding the carboxy-terminal fragments and on binding of the amino-terminal fragments of the precursor protein. Interestingly, even a small water-soluble peptide consisting of the 24 carboxy-terminal residues gave rise to a two-component spectrum, with an outer hyperfine splitting of the restricted lipid component of 59 G, indicating a considerable restriction of the chain motion. This suggests that both the carboxy- and amino-terminal parts of the protein penetrate into the center of the bilayer and cause a strong perturbation of the fatty acyl chain motion. The implications of these findings for the mechanism of apocytochrome c translocation across membranes are discussed.  相似文献   

2.
In this study, we have investigated the protein/lipid interactions of two mitochondrial precursor proteins, apocytochrome c and pCOX IV-DHFR, which exhibit mitochondrial import pathways with different characteristics. In-vitro-synthesized apocytochrome c was found to bind efficiently and specifically to liposomes composed of negatively charged phospholipids and showed a (at least partial) translocation across a lipid bilayer, as reported previously for the chemically prepared precursor protein [Rietveld, A. & de Kruijff, B. (1984) J. Biol. Chem. 259, 6704-6707; Dumont, M. E. & Richards, F. M. (1984) J. Biol. Chem. 259, 4147-4156]. Negatively charged liposomes were shown to efficiently compete with mitochondria for import of in-vitro-synthesized apocytochrome c into the organelle, suggesting an important role for negatively charged phospholipids in the initial binding of apocytochrome c to mitochondria. In contrast, the purified and in-vitro-synthesized precursor fusion protein pCOX IV-DHFR, consisting of the presequence of yeast cytochrome oxidase subunit IV fused to mouse dihydrofolate reductase was unable to translocate across a pure lipid bilayer. The data indicate that the ability of apocytochrome c to spontaneously translocate across the bilayer is not shared by all mitochondrial precursor proteins. The implications of the special protein/lipid interaction of apocytochrome c for import into mitochondria will be discussed.  相似文献   

3.
The lipid dependency of apocytochrome c binding to model membranes and of the translocation of the precursor protein across these membranes was studied by using large unilamellar, trypsin-containing vesicles. These vesicles were improved with respect to those used in a previous article (Rietveld, A., and de Kruijff, B. (1984) J. Biol. Chem. 259, 6704-6706), in the sense that a lower amount of trypsin was enclosed. In mixed egg phosphatidylcholine/bovine brain phosphatidylserine vesicles, both the Kd of apocytochrome c binding (about 20 microM) and the number of phosphatidylserine molecules interacting with the protein was found to be constant. When the phosphatidylserine fraction in the vesicles is more than 15-30% apocytochrome c addition results in the exposure of (a part of) the protein to the internal, trypsin-containing vesicle medium, which process we conceive as a translocation event. Also the interaction of apocytochrome c with vesicles composed of phosphatidylcholine and another acidic phospholipid in a 1:1 ratio, leads to the translocation of the protein across the model membrane. The affinity of this binding was found to be in the order cardiolipin greater than phosphatidylglycerol greater than phosphatidylinositol greater than phosphatidylserine. By varying the lipid composition of the vesicles, it could be demonstrated that the translocation requires a fluid bilayer. In addition, protein specificity was shown for the translocation process. Although apocytochrome c-lipid interaction causes vesicle aggregation, fusion by lipid mixing could not be detected. Due to the apocytochrome c-lipid interaction also, protein aggregates and oligomers have been formed. These results will be discussed in the light of a model for translocation of a precursor protein across a model membrane. The relevance for the mitochondrial system will also be discussed.  相似文献   

4.
A Muga  H H Mantsch  W K Surewicz 《Biochemistry》1991,30(10):2629-2635
Apocytochrome c, the heme-free precursor of cytochrome c, has been used extensively as a model to study molecular aspects of posttranslational translocation of proteins across membranes. In this report, we have used Fourier-transform infrared spectroscopy to gain further insight into the mechanism of apocytochrome c interaction with membrane phospholipids. Association of apocytochrome c with model membranes containing the acidic lipid dimyristoylphosphatidylglycerol (DMPG) as a single component results in a drastic perturbation of phospholipid structure, at the level of both the acyl chains and the interfacial carbonyl groups. However, in a binary mixture of DMPG with acyl chain perdeuterated dimyristoylphosphatidylcholine (DMPC-d54), the perturbing effect of the protein on the acidic phospholipid is greatly attenuated. In such a membrane with mixed lipids, the physical properties of the DMPG and DMPC components are affected in a similar fashion, indicating that apocytochrome c does not induce any significant segregation or lateral-phase separation of acidic and zwitterionic lipids. Analysis of the apocytochrome c spectrum in the amide I region reveals that binding to phospholipids causes considerable changes in the secondary structure of the protein, the final conformation of which depends on the lipid to protein ratio. In the presence of a large excess of DMPG, apocytochrome c undergoes a transition from an essentially unordered conformation in solution to an alpha-helical structure. However, in complexes of lower lipid to protein ratios (less than or equal to approximately 40:1), infrared spectra are indicative of an extended, intermolecularly hydrogen-bonded beta-sheet structure. The latter is suggestive of an extensive aggregation of the membrane-associated protein.  相似文献   

5.
Deuterium and phosphorus nuclear magnetic resonance techniques were used to study the interaction of the mitochondrial precursor protein apocytochrome c with headgroup-deuterated (dioleoylphosphatidyl-L-[2-2H1]serine) and acyl chain deuterated (1,2-[11,11-2H2]dioleoylphosphatidylserine) dispersions. Binding of the protein to dioleoylphosphatidylserine liposomes results in phosphorus nuclear magnetic resonance spectra typical of phospholipids undergoing fast axial rotation in extended liquid-crystalline bilayers with a reduced residual chemical shift anisotropy and an increased line width. 2H NMR spectra on headgroup-deuterated dioleoylphosphatidylserine dispersions showed a decrease in quadrupolar splitting and a broadening of the signal on interaction with apocytochrome c. Addition of increasing amounts of apocytochrome c to the acyl chain deuterated dioleoylphosphatidylserine dispersions results in the gradual appearance of a second component in the spectra with a 44% reduced quadrupolar splitting. Such large reduction of the quadrupolar splitting has never been observed for any protein studied yet. The lipid structures corresponding to these two components could be separated by sucrose gradient centrifugation, demonstrating the existence of two macroscopic phases. In mixtures of phosphatidylserine and phosphatidylcholine similar effects are observed. The induction of a new spectral component with a well-defined reduced quadrupolar splitting seems to be confined to the N-terminus since addition of a small hydrophilic amino-terminal peptide (residues 1-38) also induces a second component with a strongly reduced quadrupolar splitting. A chemically synthesized peptide corresponding to amino acid residues 2-17 of the presequence of the mitochondrial protein cytochrome oxidase subunit IV also has a large perturbing effect on the order of the acyl chains, indicating that the observed effects may be a property shared by many mitochondrial precursor proteins. In contrast, binding of the mature protein, cytochrome c, to acyl chain deuterated phosphatidylserine dispersions has no effect on the deuterium and phosphorus nuclear magnetic resonance spectra, thereby demonstrating precursor-specific perturbation of the phospholipid order. The inability of holocytochrome c to perturb the phospholipid order is due to folding of this protein, since unfolding of cytochrome c by heat or urea treatment results in similar effects on dioleoylphosphatidylserine bilayers, as observed for the unfolded precursor. Implications of these data for the import of apocytochrome c into mitochondria will be discussed.  相似文献   

6.
The fluorescence of the single tryptophan residue at position 59 in apocytochrome c, the biosynthetic precursor of the inner mitochondrial membrane protein cytochrome c, was studied in small unilamellar vesicles composed of phosphatidylserine (PS) and phosphatidylcholine (PC) with or without specifically Br-labelled acyl chains at the sn-2 position. The protein has a very high affinity for PS-containing vesicles (dissociation constant Kd less than 1 microM). From the relative quenching efficiency by the brominated phospholipids, it could be concluded that the protein specifically associates with the PS component in mixed vesicles and that maximal quenching occurred with phospholipids in which the bromine was present at the 6,7-position of the 2-acyl chain suggesting that (part of) the bound protein penetrates 7-8 A deep into the hydrophobic core of the bilayer.  相似文献   

7.
The interaction between cytochrome c and its heme-free precursor apocytochrome c and chemically prepared fragments of these basic proteins with phosphatidylserine containing model membrane systems was studied by differential scanning calorimetry and carboxyfluorescein release experiments. Addition of apocytochrome c and fragments derived from the N-terminus cause a pronounced and linear decrease of the enthalpy (delta H) of the gel to liquid-crystalline phase transition of dielaidoylphosphatidylserine. In contrast, fragments derived from the C-terminus cause a smaller reduction in delta H; a similar trend was observed for the ability of the fragments to cause an increased carboxyfluorescein release from unilamellar vesicles. In addition, the covalent attachment of the heme at cysteine residues 14 and 17 greatly reduced the ability of both the intact protein and the N-terminal fragments to decrease delta H. Using a protein translocation assay based on large unilamellar vesicles containing enclosed trypsin it was found that at gel state temperatures the ability of apocytochrome c to partially translocate the bilayer (reach the opposite membrane/water interface) was greatly reduced. The implications of these findings for the import mechanism of apocytochrome c in mitochondria are shortly indicated.  相似文献   

8.
Using 2H- and 31P-NMR techniques the effects of temperature variation and phenethyl alcohol addition were investigated on lipid acyl chain order and on the macroscopic lipid organization of membrane systems derived from cells of the Escherichia coli fatty acid auxotrophic strain K1059, which was grown in the presence of [11,11-2H2]oleic acid. Membranes of intact cells showed a gel to liquid-crystalline phase transition in the range of 4-20 degrees C, which was similar to that observed for the total lipid extract and for the dominant lipid species phosphatidylethanolamine (PE). Phosphatidylglycerol (PG) remained in a fluid bilayer throughout the whole temperature range (4-70 degrees C). At 30 degrees C acyl chain order was highest in PE, followed by the total lipid extract, PG, intact cells, and isolated inner membrane vesicles. Acyl chain order in E. coli PE and PG was much higher than in the corresponding dioleoylphospholipids. E. coli PE was found to maintain a bilayer organization up to about 60 degrees C, whereas in the total lipid extract as well as in intact E. coli cells bilayer destabilization occurred already at about 42 degrees C. It is proposed that the regulation of temperature at which the bilayer-to-non-bilayer transition occurs may be important for membrane functioning in E. coli. Addition of phenethyl alcohol did not affect the macroscopic lipid organization in E. coli cells or in the total lipid extract, but caused a large reduction in chain order of about 70% at 1 mol% of the alcohol in both membrane systems. It is concluded that while both increasing temperature and addition of phenethyl alcohol can affect membrane integrity, in the former case this is due to the induction of non-bilayer lipid structures, whereas in the latter case this is caused by an increase in membrane fluidity.  相似文献   

9.
Monomolecular layers of lipid extracts of microsomal, mitochondrial outer and inner membranes, and pure lipid species have been used to measure their interaction with apo- and holocytochrome c. Large differences were observed both with respect to the nature and the lipid specificity of the interaction. The initial electrostatic interaction of the hemefree precursor apocytochrome c with anionic phospholipids is followed by penetration of the protein in between the acyl chains. Apocytochrome c shows similar interactions for all anionic lipids tested. In strong contrast the holoprotein discriminates enormously between cardiolipin for which it has a high affinity and phosphatidylserine and phosphatidylinositol for which it has a much lower affinity. For these latter lipids the interaction with cytochrome c is primarily electrostatic. The cytochrome c-cardiolipin interaction shows several unique features which suggest the formation of a specific complex between the two molecules. These properties account for the preference in interaction of the apoprotein with the lipid extract of the outer mitochondrial membrane over that of the endoplasmic reticulum and the large preference of cytochrome c for the inner over that of the outer mitochondrial membrane lipid extract. Only apocytochrome c was able to induce close contacts between monolayers of the mitochondrial outer membrane lipids and vesicles of mitochondrial inner membrane lipids. Experiments with fragments of both protein and unfolding experiments with cytochrome c revealed that the differences in interaction between the two proteins are mainly due to differences in their tertiary structure and not the presence of the heme group itself. The initial unfolded structure of apocytochrome c is responsible for the high penetrative power of the protein and its ability to induce close membrane contact, whereas the folded structure of cytochrome c is responsible for the specific interaction with cardiolipin. The results are discussed in the light of the apocytochrome c import process in mitochondria and suggest that lipid-protein interactions contribute to targeting the precursor toward mitochondria and are important for its translocation across the outer mitochondrial membrane and the final localization of cytochrome c toward the outside of the inner mitochondrial membrane.  相似文献   

10.
The ability of apocytochrome c and the heme containing respiratory chain component, cytochrome c, to induce fusion of phosphatidylcholine (PC) small unilamellar vesicles containing 0-50 mol % negatively charged lipids was examined. Both molecules mediated fusion of phosphatidylserine (PS):PC 1:1 vesicles as measured by energy transfer changes between fluorescent lipid probes in a concentration- and pH-dependent manner, although cytochrome c was less potent and interacted over a more limited pH range than the apocytochrome c. Maximal fusion occurred at pH 3, far below the pKa of the 19 lysine groups contained in the protein (pI = 10.5). A similar pH dependence was observed for vesicles containing 50 mol % cardiolipin (CL), phosphatidylglycerol (PG), and phosphatidylinositol (PI) in PC but the apparent pKa values varied somewhat. In the absence of vesicles, the secondary structure of apocytochrome c was unchanged over this pH range, but in the presence of negatively charged vesicles, the polypeptide underwent a marked conformational change from random coil to alpha-helix. By comparing the pH dependencies of fusion induced by poly-L-lysine and apocytochrome c, we concluded that the pH dependence derived from changes in the net charge on both the vesicles and apocytochrome c. Aggregation could occur under conditions where fusion was imperceptible. Fusion increased with increasing mole ratio of PS. Apocytochrome c did induce some fusion of vesicles composed only of PC with a maximum effect at pH 4. Biosynthesis of cytochrome c involves translocation of apocytochrome c from the cytosol across the outer mitochondrial membrane to the outer mitochondrial space where the heme group is attached. The ability of apocytochrome c to induce fusion of both PS-containing and PC-only vesicles may reflect characteristics of protein/membrane interaction that pertain to its biological translocation.  相似文献   

11.
The ability of apocytochrome c and the heme containing respiratory chain component, cytochrome c, to induce fusion of phosphatidylcholine (PC) small unilamellar vesicles containing 0–50 mol% negatively charged lipids was examined. Both molecules mediated fusion of phosphatidylserine (PS):PC 1:1 vesicles as measured by energy transfer changes between fluorescent lipid probes in a concentration- and pH-dependent manner, although cytochrome c was less potent and interacted over a more limited pH range than the apocytochrome c. Maximal fusion occurred at pH 3, far below the pKa of the 19 lysine groups contained in the protein (pl = 10.5). A similar pH dependence was observed for vesicles containing 50 mol% cardiolipin (CL), phosphatidylglycerol (PG), and phosphatidylinositol (PI) in PC but the apparent pKa values varied somewhat. In the absence of vesicles, the secondary structure of apocytochrome c was unchanged over this pH range, but in the presence of negatively charged vesicles, the polypeptide underwent a marked conformational change from random coil to α-helix. By comparing the pH dependencies of fusion induced by poly-L-lysine and apocytochrome c, we concluded that the pH dependence derived from changes in the net charge on both the vesicles and apocytochrome c. Aggregation could occur under conditions where fusion was imperceptible. Fusion increased with increasing mole ratio of PS. Apocytochrome c did induce some fusion of vesicles composed only of PC with a maximum effect at pH 4. Biosynthesis of cytochrome c involves translocation of apocytochrome c from the cytosol across the outer mitochondrial membrane to the outer mitochondrial space where the heme group is attached. The ability of apocytochrome c to induce fusion of both PS-containing and PC-only vesicles may reflect characteristics of protein/membrane interaction that pertain to its biological translocation.  相似文献   

12.
R A Stuart  W Neupert 《Biochimie》1990,72(2-3):115-121
The cytochrome c import pathway differs markedly from the general route taken by the majority of other imported proteins, which is characterized by the import involvement of namely, surface receptors, the general insertion protein (GIP), contact sites and by the requirement of a membrane potential (delta psi). Unique features of both the cytochrome c precursor (apocytochrome c) and of the mechanism that transports it into mitochondria, have contributed to the evolution of a distinct import pathway that is not shared by any other mitochondrial protein analysed thus far. The cytochrome c pathway is particularly unique because i) apocytochrome c appears to have spontaneous membrane insertion-activity; ii) cytochrome c heme lyase seems to act as a specific binding site in lieu of a surface receptor and; iii) covalent heme addition and the associated refolding of the polypeptide appears to provide the free energy for the translocation of the cytochrome c polypeptide across the outer mitochondrial membrane.  相似文献   

13.
Different aspects of the interaction of apocytochrome c and model membranes composed of negatively charged lipids, were studied in order to get insight into the nature of this interaction. The effect of the protein on the lipid packing properties are revealed by DSC, ESR and monolayer techniques. These experiments clearly demonstrate that upon electrostatic interaction with the negatively charged phospholipids, apocytochrome c is able to penetrate into the hydrophobic region of the model membrane. In the case of 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, this results in a perturbation of 160 lipid molecules per apocytochrome c molecule. Most likely, apocytochrome c disrupts the formation of the gel phase and restricts the lipid chain motion above the gel to liquid-crystalline phase transition. Tryptophan fluorescence measurements confirm that at least a part of the protein penetrates into the bilayer, and suggest that after this penetration, the tryptophan (residue no. 59) is located in the glycerol backbone region of the phospholipids. Although the secondary structure of apocytochrome c is predicted to contain about 35% of alpha-helical structure, the CD pattern of an aqueous solution of the protein is featureless. However, negatively charged lipids are able to express this alpha-helical potency in the apocytochrome c, which might be important for the insertion of the protein into lipid membranes.  相似文献   

14.
Insertion of apocytochrome c into lipid vesicles   总被引:6,自引:0,他引:6  
Apocytochrome c (cytochrome c without the heme) is synthesized in the cell cytoplasm without a cleaved signal sequence, then transported across the outer mitochondrial membrane. We have studied the interaction of apocytochrome c with lipid vesicles as a model for understanding protein translocation across membranes. Apocytochrome c (but not holocytochrome c) that has been incubated with vesicles at 37 degrees C in 0.2 M NaCl binds to the vesicles. Under these conditions, as well as upon incubation with detergent or at high protein concentrations, all the added protein remains partly accessible to externally added protease, but a COOH-terminal fragment of some of the protein molecules becomes protected against digestion. When apocytochrome c is added to azolectin vesicles with internally trapped proteases, most of the added protein can be digested, even in the presence of a large excess of protease inhibitor external to the vesicles. Thus, in spite of a lack of nonpolar stretches in its amino acid sequence, apocytochrome c is capable of binding to and inserting into lipid membranes. In this model system, transport may be driven by trapping of protease-digested apocytochrome c on one side of the membrane.  相似文献   

15.
The import of cytochrome c into Neurospora crassa mitochondria was examined at distinct stages in vitro. The precursor protein, apocytochrome c, binds to mitochondria with high affinity and specificity but is not transported completely across the outer membrane in the absence of conversion to holocytochrome c. The bound apocytochrome c is accessible to externally added proteases but at the same time penetrates far enough through the outer membrane to interact with cytochrome c heme lyase. Formation of a complex in which apocytochrome c and cytochrome c heme lyase participate represents the rate-limiting step of cytochrome c import. Conversion from the bound state to holocytochrome c, on the other hand, occurs 10-30-fold faster. Association of apocytochrome c with cytochrome c heme lyase also takes place after solubilizing mitochondria with detergent. We conclude that the bound apocytochrome c, spanning the outer membrane, forms a complex with cytochrome c heme lyase from which it can react further to be converted to holocytochrome c and be translocated completely into the intermembrane space.  相似文献   

16.
Apocytochrome c derived from horse heart cytochrome c was spin-labeled on the cysteine residue at position 14 or 17 in the N-terminal region of the primary sequence, and cytochrome c from yeast was spin-labeled on the single cysteine residue at sequence position 102 in the C-terminal region. The spin-labeled apocytochrome c and cytochrome c were bound to fluid bilayers composed of different negatively charged phospholipids that also contained phospholipid probes that were spin-labeled either in the headgroup or at different positions in the sn-2 acyl chain. The location of the spin-labeled cysteine residues on the lipid-bound proteins was determined relative to the spin-label positions in the different spin-labeled phospholipids by the influence of spin-spin interactions on the microwave saturation properties of the spin-label electron spin resonance spectra. The enhanced spin relaxation observed in the doubly labeled systems arises from Heisenberg spin exchange, which is determined by the accessibility of the spin-label group on the protein to that on the lipid. It is found that the labeled cysteine groups in horse heart apocytochrome c are located closest to the 14-C atom of the lipid acyl chain when the protein is bound to dimyristoyl- or dioleoyl-phosphatidylglycerol, and to that of the 5-C atom when the protein is bound to a dimyristoylphosphatidylglycerol/dimyristoylphosphatidylcholine (15:85 mol/mol mixture. On binding to dioleoylphosphatidylglycerol, the labeled cysteine residue in yeast cytochrome c is located closest to the phospholipid headgroups but possibly between the polar group region and the 5-C atom of the acyl chains. These data determine the extent to which the different regions of the proteins are able to penetrate negatively charged phospholipid bilayers.  相似文献   

17.
The biogenesis of cytochrome c1 involves a number of steps including: synthesis as a precursor with a bipartite signal sequence, transfer across the outer and inner mitochondrial membranes, removal of the first part of the presequence in the matrix, reexport to the outer surface of the inner membrane, covalent addition of heme, and removal of the remainder of the presequence. In this report we have focused on the steps of heme addition, catalyzed by cytochrome c1 heme lyase, and of proteolytic processing during cytochrome c1 import into mitochondria. Following translocation from the matrix side to the intermembrane-space side of the inner membrane, apocytochrome c1 forms a complex with cytochrome c1 heme lyase, and then holocytochrome c1 formation occurs. Holocytochrome c1 formation can also be observed in detergent-solubilized preparations of mitochondria, but only after apocytochrome c1 has first interacted with cytochrome c1 heme lyase to produce this complex. Heme linkage takes place on the intermembrane-space side of the inner mitochondrial membrane and is dependent on NADH plus a cytosolic cofactor that can be replaced by flavin nucleotides. NADH and FMN appear to be necessary for reduction of heme prior to its linkage to apocytochrome c1. The second proteolytic processing of cytochrome c1 does not take place unless the covalent linkage of heme to apocytochrome c1 precedes it. On the other hand, the cytochrome c1 heme lyase reaction itself does not require that processing of the cytochrome c1 precursor to intermediate size cytochrome c1 takes place first. In conclusion, cytochrome c1 heme lyase catalyzes an essential step in the import pathway of cytochrome c1, but it is not involved in the transmembrane movement of the precursor polypeptide. This is in contrast to the case for cytochrome c in which heme addition is coupled to its transport directly across the outer membrane into the intermembrane space.  相似文献   

18.
The electrochemical potential drives the translocation of the precursor form of outer membrane protein A (proOmpA) and other proteins across the plasma membrane of Escherichia coli. We have measured the electrical potential, delta psi, across inverted membrane vesicles during proOmpA translocation. delta psi, generated by the electron transport chain, is substantially dissipated by proOmpA translocation. delta psi dissipation requires SecA, ATP, and proOmpA. proOmpA which, due to the covalent addition of a folded protein to a cysteinyl side chain, is arrested during its translocation, can nevertheless cause the loss of delta psi. Thus the movement of charged amino acyl residues is not dissipating the potential. This translocation-specific reduction in delta psi is only seen in the presence of halide anions, although halide anions are not needed for proOmpA translocation per se. We therefore propose that translocation intermediates directly increase the membrane permeability to halide anions.  相似文献   

19.
The effects of cytochrome c and apocytochrome c on the structural properties of various membrane phospholipids in model systems were compared by binding, calorimetric, permeability, 31P n.m.r. and freeze-fracture experiments. Both cytochrome c and apocytochrome c experience strong interactions only with negatively charged phospholipids; apocytochrome c interacted more strongly than cytochrome c. These interactions are primarily electrostatic but also have a hydrophobic character. Cytochrome c as well as apocytochrome c induces changes in the structure of cardiolipin liposomes as is shown by 31P n.m.r. and freeze-fracture electron microscopy. Cytochrome c does not affect the bilayer structure of phosphatidylserine. In contrast, interaction of apocytochrome c with this phospholipid results in changes of the 31P n.m.r. bilayer spectrum of the liposomes and also particles are observed at the fracture faces. The results are discussed in relation to the import of the protein into the mitochondrion.  相似文献   

20.
脱血红素细胞色素c的构象与其跨膜转运能力是密切相关的。鸡心脱血红素细胞色素c具有较强的自发折叠的能力,在一定条件下可以得到不同解折叠状态的鸡心脱血红素细胞色素c。本文利用疏水层析、与疏水探针1,8—ANS的结合以及色氨酸与结合的ANS之间的荧光共振能量转移,比较了不同解折叠状态的鸡心脱血红素细胞色素c分子的表面性质。结果表明,部分折叠的鸡心脱血红素细胞色素c分子获得了一种高度动态的结构,形成了动态的疏水核心;同时,它也具有较强的凝集倾向。这些性质与鸡心脱血红素细胞色素c分子较强的自发折叠能力是一致的,为进一步分析鸡心脱血红素细胞色素c分子的构象及其在跨膜转运过程中与脂的相互作用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号