首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capuchin monkeys (Cebus sp.) are notable among New World monkeys for their widespread use of tools. Like chimpanzees, they use both hammer tools and insertion tools in the wild to acquire food that would be unobtainable otherwise. Recent evidence indicates that capuchins transport stones to anvil sites and use the most functionally efficient stones to crack nuts. We further investigated capuchins’ assessment of functionality by testing their ability to select a tool that was appropriate for two different tool‐use tasks: A stone for a hammer task and a stick for an insertion task. To select the appropriate tools, the monkeys investigated a baited tool‐use apparatus (insertion or hammer), traveled to a location in their enclosure where they could no longer see the apparatus, made a selection between two tools (stick or stone), and then could transport the tool back to the apparatus to obtain a walnut. We incorporated tool transport and the lack of a visual cue into the design to assess willingness to transport the tools and the monkeys’ memory for the proper tool. Six brown capuchins (Cebus apella) were first trained to select and use the appropriate tool for each apparatus. Four animals completed training and were then tested by allowing them to view a baited apparatus and then travel to a location 8 m distant where they could select a tool while out of view of the apparatus. All four monkeys chose the correct tool significantly more than expected and transported the tools back to the apparatus. Results confirm capuchins’ propensity for transporting tools, demonstrate their capacity to select the functionally appropriate tool for two different tool‐use tasks, and indicate that they can retain the memory of the correct choice during a travel time of several seconds.  相似文献   

2.
This research examined the use of naturally-occurring metal tools by monkeys. We presented groups of capuchins (Cebus apella) with copper nuggets and apparatus that accommodated the use of tools to crack open nuts and penetrate barriers. Six of fourteen monkeys placed copper nuggets in forceful contact with hard surfaces. Five of these animals used copper nuggets to crack open nuts and penetrate acetate. In follow-up tests capuchins preferred stone tools over copper tools, and used an iron meteorite as a multi-purpose tool. We hypothesize that human metal-tool technology probably came about as a consequence of existing stone-tool practices.  相似文献   

3.
Some populations of capuchins are reported to use tools to solve foraging problems in the wild. In most cases, this involves the act of pounding and digging. The use of probing tools by wild capuchins is considerably less common. Here we report on the results of an experimental field study conducted in southern Brazil designed to examine the ability of wild black-horned capuchins (Sapajus nigritus) to use a wooden dowel as a lever or a probe to obtain an embedded food reward. A group of eight capuchins was presented with two experimental platforms, each housing a clear Plexiglas box containing two bananas on a shelf and four inserted dowels. Depending on the conditions of the experiment, the capuchins were required either to pull (Condition I) or push (Conditions II and III) the dowels, in order to dislodge the food reward from the shelf so that it could be manually retrieved. In Condition I, four individuals spontaneously solved the foraging problem by pulling the dowels in 25% (72/291) of visits. In Conditions II and III, however, no capuchin successfully pushed the dowels forward to obtain the food reward. During these latter two experimental conditions, the capuchins continued to pull the dowels (41/151 or 27% of visits), even though this behavior did not result in foraging success. The results of these field experiments are consistent with an identical study conducted on wild Cebus capucinus in Costa Rica, and suggest that when using an external object as a probe to solve a foraging problem, individual capuchins were able to rapidly learn an association between the tool and the food reward, but failed to understand exactly how the tool functioned in accomplishing the task. The results also suggest that once a capuchin learned to solve this tool-mediated foraging problem, the individual persisted in using the same solution even in the face of repeated failure (slow rate of learning extinction).  相似文献   

4.
5.
Chimpanzees have been the traditional referential models for investigating human evolution and stone tool use by hominins. We enlarge this comparative scenario by describing normative use of hammer stones and anvils in two wild groups of bearded capuchin monkeys (Cebus libidinosus) over one year. We found that most of the individuals habitually use stones and anvils to crack nuts and other encased food items. Further, we found that in adults (1) males use stone tools more frequently than females, (2) males crack high resistance nuts more frequently than females, (3) efficiency at opening a food by percussive tool use varies according to the resistance of the encased food, (4) heavier individuals are more efficient at cracking high resistant nuts than smaller individuals, and (5) to crack open encased foods, both sexes select hammer stones on the basis of material and weight. These findings confirm and extend previous experimental evidence concerning tool selectivity in wild capuchin monkeys ( [Visalberghi et?al., 2009b] and [Fragaszy et?al., 2010b]).Male capuchins use tools more frequently than females and body mass is the best predictor of efficiency, but the sexes do not differ in terms of efficiency. We argue that the contrasting pattern of sex differences in capuchins compared with chimpanzees, in which females use tools more frequently and more skillfully than males, may have arisen from the degree of sexual dimorphism in body size of the two species, which is larger in capuchins than in chimpanzees. Our findings show the importance of taking sex and body mass into account as separate variables to assess their role in tool use.  相似文献   

6.
This research examined capuchin monkey (Cebus apella) grips for the use of throwing, nut-cracking, and cutting tools. We provided subjects with stones and apparatus that accommodated the use of stones as tools. Our subjects exhibited five grips, two of which the animals used when force was the primary consideration (power grips) and three of which the animals use when accuracy of sensory judgment and instrumentation was required (precision grips). We believe that the range of contexts in which capuchins use stone tools, combined with the ability of capuchins to employ both power and precision grips as part of their tool repertoire, indicate that Cebus apella can be used to identify grips that facilitated hominid lithic technology. Am J Phys Anthropol 103:131–135, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Capuchins living in Boa Vista (Piauì, Brazil) crack open hard palm nuts on hard, level surfaces (anvils) using stones (hammers) as percussive tools. This activity leaves diagnostic physical remains: distinctive shallow depressions (pits) on the surface of the anvil, cracked shells, and stone hammers on the anvil. To initiate comparison of percussive stone tool use and interpretation of the artifacts it produces across capuchins, chimpanzees, and hominins, we describe a sample of the anvils and hammer stones used by capuchin monkeys at our site. Anvils (boulders and logs) were located predominantly in the transition zone between the flat open woodland and ridges, in locations that offered some overhead coverage, and with a tree nearby, but not necessarily near palm trees. Anvils contained shallow, hemispherical pits with smooth interiors. Hammers represent a diverse assemblage of ancient rocks that are much harder than the prevailing sedimentary rock out of which they eroded. Hard stones large enough to serve as hammers were more abundant on the anvils than in the surrounding area, indicating that capuchins transport them to the anvils. Capuchins use hammers weighing on average more than 1 kg, a weight that is equivalent to 25-40% of the average body weight for adult males and females. Our findings indicate that capuchins select stones to use as hammers and transport stones and nuts to anvil sites. Wild capuchins provide a new reference point for interpreting early percussive stone tool use in hominins, and a point of comparison with chimpanzees cracking nuts.  相似文献   

8.
Relatively few studies have explored sex differences in the use of foraging tools among primates other than apes. Although male primates are thought to be more innovative, researchers have reported a female sex bias in the use of feeding tools in wild chimpanzees. We investigate here the nature and extent of sex differences in foraging tool use over 12 mo in a free-ranging group of bearded capuchins (2 males, 5 females, and 3 juveniles) living in the dry Caatinga forests of the Serra da Capivara National Park, Piaui, Brazil. These capuchins used 3 major types of feeding tools: 1) tools for probing; 2) tools for pounding/cracking; and 3) digging stones to extract tubers or roots. Adult males performed 63% (n = 134) of all events of tool use and used tools significantly more frequently than did females, although male bout lengths across all tools (57 s ± 7.9 SE) were equivalent to those of adult females (47.3 s ± 12.6 SE). Both sexes used digging and cracking tools, although at different rates, whereas adult males used sticks to probe for prey and other rewards far more than females. Differential opportunities to use tools were not apparent: >71% of tool-use events occurred on the ground, and males and females spent equal time on the ground. We suggest that sex differences in tool use may function as opportunities for male signaling of investment quality.  相似文献   

9.
Habitually, capuchin monkeys access encased hard foods by using their canines and premolars and/or by pounding the food on hard surfaces. Instead, the wild bearded capuchins (Cebus libidinosus) of Boa Vista (Brazil) routinely crack palm fruits with tools. We measured size, weight, structure, and peak-force-at-failure of the four palm fruit species most frequently processed with tools by wild capuchin monkeys living in Boa Vista. Moreover, for each nut species we identify whether peak-force-at-failure was consistently associated with greater weight/volume, endocarp thickness, and structural complexity. The goals of this study were (a) to investigate whether these palm fruits are difficult, or impossible, to access other than with tools and (b) to collect data on the physical properties of palm fruits that are comparable to those available for the nuts cracked open with tools by wild chimpanzees. Results showed that the four nut species differ in terms of peak-force-at-failure and that peak-force-at-failure is positively associated with greater weight (and consequently volume) and apparently with structural complexity (i.e. more kernels and thus more partitions); finally for three out of four nut species shell thickness is also positively associated with greater volume. The finding that the nuts exploited by capuchins with tools have very high resistance values support the idea that tool use is indeed mandatory to crack them open. Finally, the peak-force-at-failure of the piassava nuts is similar to that reported for the very tough panda nuts cracked open by wild chimpanzees; this highlights the ecological importance of tool use for exploiting high resistance foods in this capuchin species.  相似文献   

10.
The purpose of this research was to examine the influence of age on hand preference in capuchin monkeys (Cebus apella). Twenty-two capuchins, aged 6 months to 30 years, were presented with a task that involved reaching for food and a task that involved using sponging tools to absorb juice. Adults exhibited a greater percentage of right-handed actions in each task than did immature subjects. Adults also exhibited a stronger lateral bias than did immature subjects in the sponging task. These results are consistent with hypotheses: a) adult capuchin monkeys are biased toward use of their right hand for reaching; b) adult capuchins exhibit a greater incidence of right-hand preference than do immature capuchins; and c) primates exhibit age-related differences in the strength and direction of hand preference in tasks that involve the use of tools.  相似文献   

11.
Capuchin monkeys display greatly developed tool-using capacities, performing successfully a variety of tool-tasks. Impressed by their achievements in this respect, some investigators have suggested that capuchin tool-using behaviour could be used as a model of the tool behaviour of the first hominids. The transport of tools, a task requiring complex cognitive capabilities, is an essential ingredient in the technological behaviour of the first hominids. In this way, to qualify as another source for modelling hominid behavioural evolution, capuchins had to exhibit proficiency in the transport of tools. We investigated this problem through experiments designed to elicit the transport of objects. The results showed that the monkeys were able to transport food to be processed with the use of tools, but failed when the tools themselves had to be transported. Our hypothesis is that a limited capacity for abstract representation, together with the lack of a regulatory system ensuring that the food would not be lost and consumed by another individual during the search for and transport of the tools, were responsible for such a failure. We conclude that the tool-using behaviour of capuchins presents no functional analogy with the tool behaviour of the Plio-Pleistocene hominids, and that capuchin monkeys are a very inadequate source for modelling Plio-Pleistocene hominid's technological behaviour.  相似文献   

12.
White-fronted capuchins were observed to use leaves as cups to retrieve water from tree cavities. On multiple occasions several individuals performed this behavior. Thus, these capuchins engage in habitual tool use, as defined by McGrew's classificatory scheme of tool using behavior. Am. J. Primatol. 46:259–261, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Captive tufted capuchins are proficient at both tool use and manufacture. However, their capacity to comprehend cause-effect relationships as they relate to tool use is a subject of debate. An ability to conceptualize task requirements in assessing the appropriateness of potential tools would be essential to efficient tool use in the wild. Observations of tool use among free-ranging populations of Cebus are extremely limited, and the importance of this behavior to capuchin feeding ecology is unclear. I tested tufted capuchins' ability to conceive solutions to a probing task in a naturalistic captive setting. Three out of 5 participants demonstrated an ability to consistently make and use tools selected from a wide variety of natural materials within a forest exhibit. Over 98% (N = 140) of the tools that they modified enabled them to successfully acquire food rewards. It is likely that wild Cebus apella shares this ability, and that tool use occurs under a highly specific set of natural conditions.  相似文献   

14.
From September through November 2000 we conducted an experimental field study of tool use in a group of 15 wild white-faced capuchins (Cebus capucinus) in Costa Rica. The problem presented to the capuchins involved the use of wooden dowels as probes to obtain a food reward (two bananas) located inside a clear Plexiglas box. Specifically, the task required the capuchins to manually insert a dowel into any of six holes drilled into the box in order to push the bananas off a shelf. The banana could then be retrieved through a large opening at the bottom of the box. The capuchins visited the tool-use platform 702 times over the course of 55 consecutive days and under several experimental conditions. During the first 21 days of the study, they explored the box but made no attempt to touch or pick up the dowels. Even after we placed the dowels in the holes, the capuchins only occasionally manipulated them. Overall, the results indicate that the capuchins did not use a tool to solve this novel foraging problem.  相似文献   

15.
We report the spontaneous modification and use of sticks to fish for termites, above the ground, in wild blonde capuchins (Cebus flavius). These critically endangered Neotropical primates inhabit remnants of the Atlantic Forest. They used two previously undescribed techniques to enhance their termite capture success: nest tapping and stick rotation. The current ecologically based explanation for tool use in wild capuchins (i.e. terrestrial habits and bipedalism) must be viewed cautiously. Instead, remarkable manual skills linked to a varied diet seem important in promoting tool use in different contexts. The repertoire of tool-using techniques employed by wild capuchins has been expanded, highlighting the behavioural versatility in this genus.  相似文献   

16.
Stone hammering in natural conditions has been extensively investigated in chimpanzees and bearded capuchins. In contrast, knowledge of stone tool use in wild Old World monkeys has been limited to anecdotal reports, despite having known for over 120 years that Macaca fascicularis aurea use stone tools to process shelled foods from intertidal zones on islands in the Andaman Sea. Our report is the first scientific investigation to look at the stone tools used by these macaques. We observed they were skilled tool users and used stone tools daily. They selected tools with differing qualities for differing food items, and appeared to use at least two types of stone tools. Pounding hammers were used to crush shellfish and nuts on anvils and axe hammers were used to pick or chip at oysters attached to boulders or trees. We found significant physical differences between these two tools. Tools at oyster beds were smaller and exhibited scarring patterns focused more often on the points, whereas tools found at anvils were larger and showed more scarring on the broader surfaces. We also observed grip differences between the two tool types. Lastly, macaques struck targets with axe hammers more rapidly and over a wider range of motion than with pounding hammers. Both our behavioral and lithic data support that axe hammers might be used with greater control and precision than pounding hammers. Hand‐sized axe hammers were used for controlled chipping to crack attached oysters, and larger pounding hammers were used to crush nuts and unattached shellfish on anvils. In addition to stones, they also used hand‐sized auger shells (Turritella attenuata) as picks to axe attached oysters. Pound hammering appears similar to the stone tools used by chimpanzees and capuchins, but axe hammering has not yet been documented in other nonhuman primates in natural conditions. Am. J. Primatol. 71:594–608, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Although wild cebus monkeys have been observed to use tools, this behavior has been reported only rarely. No one has systematically examined tool use in wildCebus, and it is not known how prevalent tool use is in the species' natural repertoire. During 300 hr of observation on 21 wild capuchins (Cebus capucinus imitator) at Santa Rosa National Park in Costa Rica, 31 incidents of tool use, including eight different types of tool-use behavior, were observed. These observations indicate that tool use is a notable behavior pattern in this troop. Considering these incidents of tool use in conjunction with other reports on complex food-getting and preparation behavior byCebus suggests that tool use is a manifestation ofCebus' high behavioral adaptability. Since onlyCebus and the great apes (especially chimpanzees) have been observed to show such a diverse tool-use repertoire, to use tools so frequently, or to show such complex food-getting behavior in the wild, these observations also support the notion thatCebus and the great apes have followed a parallel evolutionary development of tool-using capacity.  相似文献   

18.
Tool use in humans can be optional, that is, the same person can use different tools or no tool to achieve a given goal. Strategies to reach the same goal may differ across individuals and cultures and at the intra‐individual level. This is the first experimental study at the intra‐individual level on the optional use of a tool in wild nonhuman primates. We investigated optional tool use by wild bearded capuchins (Sapajus libidinosus) of Fazenda Boa Vista (FBV; Piauí, Brazil). These monkeys habitually succeed in cracking open the mesocarp of dry cashew nuts (Anacardium spp.) by pounding them with stones and/or by biting. We assessed whether availability of a stone and resistance of the nut affected capuchins' choice to pound or to bite the nuts and their rates of success. Sixteen capuchins (1–16 years) received small and large dry cashew nuts by an anvil together with a stone (Stone condition) or without a stone (No‐Stone condition). In the Stone conditions, subjects used it to crack the nut in 89.1% (large nuts) and 90.1% (small nut) of the trials. Nut size significantly affected the number of strikes used to open it. Availability of the stone significantly increased the average percent of success. In the No‐Stone conditions, monkeys searched for and used other percussors to crack the nuts in 54% of trials. In all conditions, age affects percentage of success and number of strikes to reach success. We argue that exclusive use of stones in other sites may be due to the higher abundance of stones at these sites compared with FBV. Since capuchins opened cashews with a tool 1–2 years earlier than they succeed at cracking more resistant palm nuts, we suggest that success at opening cashew nuts with percussors may support the monkeys' persistent efforts to crack palm nuts.  相似文献   

19.
Selection and transport of objects to use as tools at a distant site are considered to reflect planning. Ancestral humans transported tools and tool-making materials as well as food items. Wild chimpanzees also transport selected hammer tools and nuts to anvil sites. To date, we had no other examples of selection and transport of stone tools among wild nonhuman primates. Wild bearded capuchins (Cebus libidinosus) in Boa Vista (Piauí, Brazil) routinely crack open palm nuts and other physically well-protected foods on level surfaces (anvils) using stones (hammers) as percussive tools. Here we present indirect evidence, obtained by a transect census, that stones suitable for use as hammers are rare (study 1) and behavioral evidence of hammer transport by twelve capuchins (study 2). To crack palm nuts, adults transported heavier and harder stones than to crack other less resistant food items. These findings show that wild capuchin monkeys selectively transport stones of appropriate size and hardness to use as hammers, thus exhibiting, like chimpanzees and humans, planning in tool-use activities.  相似文献   

20.
Humans, chimpanzees, capuchins and aye-ayes all display an unusually high degree of encephalization and diverse omnivorous extractive foraging. It has been suggested that the high degree of encephalization in aye-ayes may be the result of their diverse, omnivorous extractive foraging behaviors. In combination with certain forms of tool use, omnivorous extractive foraging has been hypothesized to be linked to higher levels of sensorimotor intelligence (stages 5 or 6). Although free-ranging aye-ayes have not been observed to use tools directly in the context of their extractive foraging activities, they have recently been reported to use lianas as tools in a manner that independently suggests that they may possess stage 5 or 6 sensorimotor intelligence. Although other primate species which display diverse, omnivorous extractive foraging have been tested for sensorimotor intelligence, aye-ayes have not. We report a test of captive aye-ayes' comprehension of tool use in a situation designed to simulate natural conditions. The results support the view that aye-ayes do not achieve stage 6 comprehension of tool use, but rather may use trial-and-error learning to develop tool-use behaviors. Other theories for aye-aye encephalization are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号