首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cynipid gall formation is achieved by an insect–plant interaction whereby cynipid gallwasps redirect host‐plant development to form novel structures to protect and nourish the developing larvae. Work was carried out to investigate the molecular mechanisms involved in this interaction, and extend the understanding of plant tissue development. Cytological changes of the inner‐gall tissue throughout the development of several gall species was investigated and the developmental stages of gall formation defined, to reveal two different patterns of development followed by the galls tested. Fluorescent in situ hybridization demonstrated many of the inner‐gall cells to be polytenized. Comparisons between inner‐gall and non‐gall tissue protein signatures by Schönrogge et al. (Plant, Cell and Environment 23, 215–222, 2000) have demonstrated the variation between gall and non‐gall protein signatures, and identified a number of inner‐gall proteins. Further analysis of one of these inner‐gall proteins involved in lipid synthesis, putative biotin carboxyl carrier protein (BCCP), revealed differential expression throughout development, and showed this expression to be concentrated in the inner‐gall tissue in all the gall species tested.  相似文献   

2.
Parasitism may explain the patchy distributions of host populations. The present paper is a study of larval distributions of the parasitoid Eurytoma robusta in galls of the tephritid gall fly Urophora cardui. It focuses on E. robusta's choice of U. cardui gall and whether this changes relative to the rate of parasitism. Oviposition patterns were inferred by direct counts of larvae in galls and genetically, for both species, using indirect relatedness estimates between gall‐members. Furthermore, rates of parasitism in four populations were monitored for 4 years. The modal distribution of E. robusta larvae per gall was one and independent of the level of parasitism. The mean number of E. robusta per gall did not differ from Poisson distributions at different parasitism rates. We were not able to demonstrate a parasitoid preference for gall size. In contrast, parasitoids may have a negative effect on gall growth. Relatedness estimates showed that E. robusta gall members were often unrelated, whereas U. cardui were siblings. Thus, larval distributions of E. robusta suggest that oviposition behaviour is generally constrained and density independent. In four populations monitored over 4 years, parasitism was initially high (up to 70%), but suddenly declined with no apparent effect on fly (gall) abundance.  相似文献   

3.
采用光学显微镜观察了油茶叶肿病子房瘿体和叶片瘿体的形态特征和组织结构特点。结果表明:(1)油茶叶肿病瘿体是油茶的幼嫩子房和幼叶被细丽外担菌感染后所导致的组织增生而成的,细丽外担菌分布于成熟子房瘿体的外表面和叶片瘿体的表面。(2)子房瘿体由受感染的雌蕊子房增殖而来,成熟后表皮层脱落。(3)子房壁分两层,外层子房壁肉质肥厚,主要由大型薄壁细胞构成,是食用的主要部分,内层子房壁为较薄的心皮层,内外两层子房壁之间具有较大的空隙;心皮内有胚珠,胚珠着生在中轴胎座上,胚珠内部中空而没有育性。(4)叶片瘿体为受感染的幼嫩叶片增殖所致,由大型薄壁细胞构成,瘿体表面具表皮层,成熟后表皮脱落。(5)在正常叶片与叶片瘿体的过渡区内有维管束相通,瘿体侧的厚度比正常叶片厚度增加3~4倍,细胞体积增大5~10倍,但瘿体细胞内无叶绿体。  相似文献   

4.
In the past, Rhopalomyia longitubifex, Rhopalomyia shinjii, and Rhopalomyia sp. (Diptera: Cecidomyiidae) have been regarded as independent species based on differences in the sizes and shapes of axillary bud galls induced on Artemisia montana (Asteraceae) in Japan and A. princeps in Japan and Korea. However, comparison of morphological features and molecular sequencing data indicate that these Rhopalomyia gall midges are identical and that the differences in gall shape are polymorphisms, although the measurements of gall height and diameter overlap slightly. This finding suggests that although galls have frequently been regarded as extensions of the phenotype of a species, differences in gall shape may not always be reliable for identifying gall‐inducing cecidomyiids. The older name, R. longitubifex, is applied to these gall midges, and the names that were applied to this species on later occasions are revised or synonymized. The mature and immature stages of R. longitubifex are redescribed and information on the distribution, host range, and gall size of this species is provided. We also discuss the role of gall polymorphism in the early stages of speciation.  相似文献   

5.
Cynipid galls are examples of induced plant development, where the gall inducer is in control of cell differentiation and morphogenesis of a new plant organ. This study concentrates on the tissues of the larval chamber common to all cynipid galls. The protein content of the inner gall tissue was compared to that of non‐gall plant tissues. We investigated three oak and two rose galls and their respective host plants. Total protein signatures of inner gall tissues were different from those of non‐gall plant tissues, and among the five galls. N‐terminal sequences were obtained for two abundant proteins from the inner gall tissues of D. spinosa and A. quercuscalicis, which were common to all galls, at 62 and 43 kDa. Database queries suggest the 62 kDa protein to be homologous to a protein disulphide isomerase (PDI), and the 43 kDa protein to be homologous to NAD‐dependent formate dehydrogenase (FDH). A naturally biotinylated protein was detected at 33 kDa during Western analyses with streptavidin. Western analyses revealed the presence of the biotinylated protein and PDI in the inner gall tissues of all five galls, while FDH was only detected in A. quercuscalicis and A. fecundator. PDI was also common to all non‐gall tissues, while FDH was not detected in non‐gall tissues, and the biotinylated protein was only detected in seeds. The proteins identified in the inner gall tissue suggest that (a) inner gall tissues in some galls are under respiratory stress, and (b) cynipid gall formation might involve the ectopic expression of seed‐specific proteins.  相似文献   

6.
The number of larvae reaching maturity within the gall of Adelges japonicus was positively related to gall volume, and the relationship between the number of mature larvae and gall volume did not change with different densities of colonized larvae. The population changes in the bud galls of A. japonicus were surveyed by collecting the galls, which did not suffer predation or parasitism within the galls, from young artificial plantations of Picea jezoensis over two years. In the year when the density of colonized larvae was high, they suffered a 42% mortality within the galls, whereas mortality was nearly zero in the low density year. The numbers of larvae per gall were positively correlated with gall volume. The regression lines of the number of colonized larvae on gall volume did not differ significantly in the regression coefficients between the two years, whereas the intercept was significantly higher in the year when the density of colonized larvae was higher. However, different within-gall mortality nullified this difference, and the regression lines of the number of mature larvae on gall volume had no significant difference both in the regression coefficients and the intercepts. This suggests that the number of mature larvae per gall was limited by available resources within the gall which were positively related to gall volume. In 25% of the galls in which mature larvae inhabited, the space within the galls were completely filled by the larvae, indicating that space was one of the limiting resources. Gall volume also affected the number of adults that emerged from the gall and the potential number of their progeny.  相似文献   

7.
Tumor development in wistaria gall caused byErwinia milletiae, (Kawakami and Yoshida) Magrou was observed under a microscope. Hypertrophied cells were observed near wounds 3 days after inoculation. Active cell divisions subsequently occurred in the hypertrophied cells resulting in many daughter cells with thin cell walls, large intensely stained nuclei, and less vacuolated, dense cytoplasm. Hyperplasia occurred often in the concentric arrangements around large bacterial fissures. These cell groups, which were commonly found in phloem, were considered to be the elementary unit tissue of the tumor. With the development of each unit tissue, the surrounding parenchyma tissues appeared to be markedly compressed. The hyperplastic cells near cambium differentiated into the tracheal elements which developed later into vascular bundles extending to the gall tissues. When the tumor tissues further proliferated with a rapid increase in dimensions, the tumor finally erupted out of the periderm of the stem forming a visible gall. The gall tissues were quite different from those of the root nodules caused byRhizobium sp. in that they had an absence of periderm, the full development of the tracheal elements, the diversity of cells in both size and shape, and the multiplication of the pathogenic bacterium in the intercellular spaces.  相似文献   

8.
Abstract.
  • 1 The natural history of a gall wasp including interactions with inquilines, parasites, and a mutualistic ant are examined. The stability of the system is described from the perspective of influences on gall wasp life history characteristics.
  • 2 An exclusion experiment demonstrated that the nectar-secreting gall of Disholcaspis perniciosa mediates a mutualism with the tending ant, Formica obscuripes. Survivorship increased from 0% in the absence of ants to 25.3% in their presence, largely due to the exclusion of inquilines.
  • 3 Specialized parasites, Eudecatoma spp., attacked before the ant-gall interaction began, when the developing gall was still beneath the host plant (Quercus gambellii) epidermis and ants were not in attendance. They may select for later developing gall wasps, which benefit by having fewer individuals parasitized. However, counter-selection for earlier development may result from decreased gall wasp size, decreased fecundity, and an increase in gall failures resulting from late development.
  • 4 Local persistence of the gall wasp population despite increased pressure from inquilines and parasites was attributed to gall wasp escape in time due to polymorphic emergence resulting from diapause. Most individuals emerge at the end of the summer, but approximately 15% remain in the galls as prepupae for 1–5 years.
  相似文献   

9.
Two types of cecidomyiid leaf galls, cup‐shaped and umbrella‐shaped, occur on Litsea acuminata (Lauraceae) in Taiwan. Based on the concept of gall shapes as “extended phenotypes” of gall inducers, these two types could be induced by different gall midge species. However, galls with intermediate shapes between the two types were recently discovered, which implies that possible genetic exchanges occur between the gall inducers of both types. To clarify the taxonomic status of gall midges responsible for the two types of galls on L. acuminata, we undertook taxonomic, molecular phylogenetic and ecological studies. Our findings show that the two gall types are induced by the same Bruggmanniella species and the species is new to science. We describe the species forming this range of galls as Bruggmanniella litseae sp. n. , and compare their geographical distribution, galling position and morphometry. Based on our results, a possible evolutionary scenario of B. litseae sp. n. is discussed.  相似文献   

10.
Seven species of Australian gall-inducing thrips have a helping caste (soldiers). This caste is morphologically distinct and has been shown to use these physical differences to be a more effective fighting force. Here we investigate behavioral differences between castes of Kladothrips intermedius (Bagnall) when faced with the destruction of the gall; that is, walking behavior rather than fighting. Two parameters, curvilinear velocity (VCL) and linearity (LIN) were used to describe the two dimensional movements of each caste in our experimental setup. In our trials the dispersers moved more directly (LIN) and quickly (VCL) than soldiers. This is consistent with the view that soldiers are behaviorally distinct and committed to life in a gall while, dispersers (second-instars and adults) seem to have somewhere to go.  相似文献   

11.
Plant architecture is considered to affect herbivory intensity, but it is one of the least studied factors in plant–insect interactions, especially for gall-inducing insects. This study aimed to investigate the influence of plant architecture on the speciose fauna of gall-inducing insects associated with 17 species of Baccharis. Five architectural variables were evaluated: plant height, number of fourth-level shoots, biomass, average level and number of ramifications. The number of galling species associated with each host plant species was also determined. To test the effects of plant architecture on gall richness at the individual level, we used another data set where the number of fourth-level shoots and gall richness were determined for B. concinna, B. dracunculifolia, and B. ramosissima every 3 weeks during 1 year. The average similarity between host species based on gall fauna was low (9%), but plants with the same architectural pattern tended to support similar gall communities. The most important architectural trait influencing gall richness at the species level was the number of fourth-level shoots, which is indicative of the availability of plant meristems, a fundamental tissue for gall induction and development. This variable also showed a positive correlation with gall richness at the individual level. We propose that variations in gall richness among host species are driven by interspecific differences in plant architecture via availability of young, undifferentiated tissue, which is genetically controlled by the strength of the apical dominance. Plant architecture should have evolutionary consequences for gall communities, promoting insect radiation among architecturally similar plants through host shift and sympatric speciation. We also discuss the role of plant architecture in the global biogeography of gall-inducing insects. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Abstract 1. Field studies were conducted to evaluate the preference and performance of a gall‐inducing midge (Harmandia tremulae) within the crown of trembling aspen (Populus tremuloides). Females did not select oviposition sites preferentially within leaves, but did lay preferentially on young leaves. 2. Larvae were the only life stage involved in gall site selection within leaves and in gall initiation and development. Gall size, which was positively related to survival, was highest for galls on mid veins that were located close to the petiole. However, one‐third of galls were located on lateral veins and most galls were not adjacent to the petiole, indicating that many larvae choose sub‐optimal gall initiation sites. 3. Gall density was positively associated with leaf length, and leaf length, was positively associated with gall size. However, gall density per leaf was not related to larval survival in galls. This latter result may be a result of an observed inverse relationship between gall size and gall density for similar‐sized leaves. 4. The results partially support the plant vigour and optimal plant module size hypotheses, which predict that galler fitness in successfully induced galls should be highest on large, fast‐growing plant modules. The lack of a strong preference‐performance link supports the confusion hypothesis, which predicts that oviposition and gall site selection may often be suboptimal in systems where galler lifespan is short. This study suggests that small‐scale variations in plant quality within leaves, can render gall site selection by juveniles as important as that previously reported for adult females.  相似文献   

13.
The present work reports the results of a study on the isolation and characterization of matrix polysaccharides in the cell walls of galls formed by an aphid (Neothoracaphis yanonis) on Distylium racemosum leaves. Cell walls were isolated from both healthy Distylium leaf and gall tissues and then extracted sequentially with cyclohexane‐trans‐1,2‐diaminetetra‐acetate (CDTA), Na2CO3, 1 m KOH, and 4 m KOH. The amount of pectin solubilized from gall cell walls was approximately 2.6‐fold higher than the pectin solubilized from leaf cell walls, whereas the amount of hemicellulose solubilized from gall cell walls was 1.4‐fold higher than that from normal leaf cell walls. When the polysaccharides were fractionated by anion‐exchange chromatography, considerable increases in arabinose and galactose were observed in CDTA‐soluble pectic polymer (fraction PI‐1) from gall cell walls, whereas the gall cell walls had less xylose in 1 m KOH‐soluble hemicellulosic polymers (fractions HI‐2, HI‐3, and HI‐4) than did the cell walls from the healthy leaf. The hemicellulosic polymers of the gall cell walls exhibited distinctly different patterns of molecular mass, compared with the healthy leaf cell walls. These results suggest that an extensive change occurs in the matrix polysaccharide structure of the cell walls of Distylium galls formed by an aphid. In addition, many glycosylhydrolase activities were detected in the protein fraction solubilized with strong saline solution from the gall cell walls, and the activities of β‐galactosidase, β‐xylosidase and α‐l ‐arabinofuranosidase were considerably increased under gall formation.  相似文献   

14.
Summary We tested the Enemy Impact Hypothesis, which predicts that communities of one tropic level are organized by the tropic level above. In the case of gallforming insect communities, the hypothesis predicts that gall morphology will diverge, minimizing the number of parasitoids shared among species. We used the monophyletic group of gallforming cecidomyiids (Asphondylia spp.) on creosote bush (Larrea tridentata) to test this hypothesis, predicting that species with thicker gall walls should exclude species of parasitoids with shorter ovipositors and have lower levels of parasitism. Of 17 parasitoid species reared from Asphondylia galls on creosote bush, 9 accounted for over 98% of parasitism. Seven of these 9 species had ovipositors long enough to penetrate 10 of 13 gall morphs measured. There was no significant relationship between gall wall thickness and number of associated parasitoid species (r 2=0.01, P>0.05, n=13). There was no relationship between gall wall thickness and types of parasitoid species colonizing galls: parasitoids with the shortest ovipositors colonized all types of gall morphs and were dominant members of the parasitoid assemblages in galls with the thickest walls. Ultimately, there were no significant differences in percent parasitism among Asphondylia species, regardless of gall wall thickness. We found no difference in numbers of associated parasitoids or percent parasitism in galls with different textures (e.g. hairy versus smooth), different locations on the plant or different phenologies. Our results suggest that enemy impact has not influenced the diversity of this gall community. Gall wall thickness, phenology, location on the plant and surface structure do not appear to influence the distribution of parasitoid species. Other explanations are offered to account for diversity in gall morphology among these species.  相似文献   

15.
Evidence of poor correspondence between an insect herbivore’s oviposition preferences and the performance of its offspring has generally been attributed either to maladaptive behavior of the insect mother or inadequate measurement by the researcher. In contrast, we hypothesize that many cases of “bad mothers” in herbivores may be a byproduct of the hierarchical way natural selection works on resistance in host plants. Epistatic selection on the components of resistance (i.e., antixenosis and antibiosis) may generate negative genetic correlations between the resistance components, which could counteract the efforts of herbivores to oviposit on the best hosts for the performance of their offspring. In common garden and greenhouse experiments, we measured aspects of antixenosis and antibiosis resistance in 26 genets of tall goldenrod, Solidago altissima, against two common herbivores: the gall-inducing fly Eurosta solidaginis and the spittlebug Philaenus spumarius. Goldenrod antixenosis and antibiosis were positively correlated against E. solidaginis and negatively correlated against P. spumarius. Analogously, population-wide preference–performance correlations were positive for the gall flies and negative for the spittlebugs. Several natural history differences between the two insects could make gall flies better mothers, including better synchrony of the phenologies of the flies and the host plant, the much narrower host range of the gall flies than the spittlebugs, and the more sedentary lifestyle of the gall fly larvae than the spittlebug nymphs. If these results are typical in nature, then negative genetic correlations in antixenosis and antibiosis in plants may often result in zero or negative population-wide correlations between preference and performance in herbivores, and thus may be an important reason why herbivorous insects often appear to be bad mothers.  相似文献   

16.
17.
S. E. Hartley 《Oecologia》1998,113(4):492-501
The chemical composition of galled and ungalled plant tissue was compared in a series of experiments. Gall and adjacent plant tissue was analysed for 20 species of gall-former on 11 different plant species. There were clear differences between galled and ungalled tissue in levels of nutrients and secondary compounds. Gall tissue generally contained lower levels of nitrogen and higher levels of phenolic compounds than ungalled plant tissue. The gall tissue produced by the same plant in response to different species of gall-former differed in chemical composition, as did the gall-tissue from young and mature galls of the same species. The chemical differences between gall and plant tissues were studied in more detail in two field manipulations. Firstly, the seasonal changes in phenolic biosynthesis in Pontania proxima and P. pedunculi (Hymenoptera: Tenthredinidae) gall tissue were compared to those of their host plants, Salix alba and S. caprea. In both types of gall tissue, phenolic levels declined as the season progressed, but levels in the surrounding plant tissue increased. When the gall insects were killed with insecticide, phenolic levels in the galled tissue dropped to the same level as those in adjacent plant tissue. Secondly, the density of Cynips divisa (Hymenoptera: Cynipidae) galls on Quercus robur leaves was reduced by removing half the galls present, either those from the central region of the leaf or those from the edge. Decreasing gall density increased the size of the remaining galls and the weight of the insects, but these effects were most marked when the galls remaining were growing centrally on the leaf, i.e. when the galls from the edge had been removed. Decreasing gall density increased the nitrogen content of the remaining galls, again to a greater extent in galls growing centrally on the leaf. The results of these studies suggest that the levels of nutrients and secondary compounds in gall tissue are usually markedly different to those of surrounding plant tissue, and that gall-formers may produce species-specific and temporally variable changes in the chemical composition of gall tissue. Received: 7 July 1997 / Accepted: 29 September 1997  相似文献   

18.
Rhus gall aphids (Fordinae : Melaphidini) have a disjunct distribution in East Asia and North America and have specific host plant relationships. Some of them are of economic importance and all species form sealed galls which show great variation in shape, size, structure, and galling‐site. We present a phylogeny incorporating ten species and four subspecies of Rhus gall aphids based on 1694 base pairs of nuclear elongation factor‐1α (EF1α) and mitochondrial cytochrome oxidase subunit II (COII) DNA sequence data. The results suggest that Melaphidini is monophyletic and at the genus level, Schlechtendalia, Nurudea, and Floraphis were each monophyletic. Kaburagia and Meitanaphis were not monophyletic and therefore inconsistent with the current classification. The North American sumac gall aphid, Melaphis rhois, was most closely related to the East Asian Floraphis species, although this was poorly supported. The conservation of gall morphology with respect to aphid phylogeny rather than their host plants suggests that gall morphology is largely determined by the aphids. While there is no evidence of strict co‐speciation between the aphids and their primary host plants, switching between recently diverged host plants may be involved in the speciation process in Melaphidini.  相似文献   

19.
In most gall-forming aphids, only the fundatrix is able to induce a gall on the host plant. In Smynthurodes betae Westw. (and a few other species), F2 descendants emerge from the mother gall and induce their own, morphologically different galls. This constitutes an added complexity to the already very complex life cycle of gall-forming aphids. We investigated the ecology of S. betae on marked trees and shoots at four sites in Israel. Gall initiation, gall distribution and density, and temporal changes in clone size within the galls were investigated during two consecutive years. We discuss the possibility that the two-gall life cycle evolved from the typical one-gall system of most gall aphids, and the possible selective advantage of this added complexity in the life-history strategy of gall aphids. Although the total reproductive output of S. betae is not higher than in related species with a single gall per life cycle, there seems to be an advantage in the subdivision of each aphid clone into several galls, thus reducing the risk of the accidental extinction of the clone (genotype) by environmental factors, including parasites and predators.  相似文献   

20.
The presence of the bothriocephalidean cestode Tetracampos ciliotheca Wedl, 1861 is reported from the gall bladders of the catfish Clarias anguillaris from Loumbila and Ziga reservoirs, Burkina Faso, in 2010–2011. Of the 159 specimens examined, 47 were infected. Mean intensity of infection was 4.3 parasites per infected host, the maximum was 22 tapeworms in the gall bladder and the mean abundance was 1.3 parasites. There was no significant difference between males and females or between the two localities. There was a positive relationship between fish size and the number of parasites in the gall bladder. This study provides further evidence of the presence of T. ciliotheca in the gall bladder, in which most tapeworms found were localised. Tapeworms were also found in the stomach and intestine, with prevalences of 1% and 16%, and mean infection intensities of 1 and 5.3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号