首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The tetraspanin membrane protein CD151 has been suggested to regulate cancer invasion and metastasis by initiating signaling events. The CD151-mediated signaling pathways involved in this regulation remain to be revealed. In this study, we found that stable transfection of CD151 into MelJuSo human melanoma cells lacking CD151 expression significantly increased cell motility, matrix metalloproteinase-9 (MMP-9) expression, and invasiveness. The enhancement of cell motility and MMP-9 expression by CD151 overexpression was abrogated by inhibitors and small interfering RNAs targeted to focal adhesion kinase (FAK), Src, p38 MAPK, and JNK, suggesting an essential role of these signaling components in CD151 signaling pathways. Also, CD151-induced MMP-9 expression was shown to be mediated by c-Jun binding to AP-1 sites in the MMP-9 gene promoter, indicating AP-1 activation by CD151 signaling pathways. Meanwhile, CD151 was found to be associated with alpha(3)beta(1) and alpha(6)beta(1) integrins in MelJuSo cells, and activation of associated integrins was a prerequisite for CD151-stimulated MMP-9 expression and activation of FAK, Src, p38 MAPK, JNK, and c-Jun. Furthermore, CD151 on one cell was shown to bind to neighboring cells expressing CD151, suggesting that CD151 is a homophilic interacting protein. The homophilic interactions of CD151 increased motility and MMP-9 expression of CD151-transfected MelJuSo cells, along with FAK-, Src-, p38 MAPK-, and JNK-mediated activation of c-Jun in an adhesion-dependent manner. Furthermore, C8161 melanoma cells with endogenous CD151 were also shown to respond to homophilic CD151 interactions for the induction of adhesion-dependent activation of FAK, Src, and c-Jun. These results suggest that homophilic interactions of CD151 stimulate integrin-dependent signaling to c-Jun through FAK-Src-MAPKs pathways in human melanoma cells, leading to enhanced cell motility and MMP-9 expression.  相似文献   

5.
6.
7.
Isoliquiritigenin (ISL, 4,2′,4′-trihydroxychalcone), which is found in licorice, shallot and bean sprouts, is a potent antioxidant with anti-inflammatory and anti-carcinogenic effects. The purpose of this study was to investigate the effects of ISL treatment on the migration, invasion and adhesion characteristics of DU145 human prostate cancer cells. DU145 cells were cultured in the presence of 0–20 μmol/L ISL with or without 10 μg/L epidermal growth factor (EGF). ISL inhibited basal and EGF-induced cell migration, invasion and adhesion dose dependently. ISL decreased EGF-induced secretion of urokinase-type plasminogen activator (uPA), matrix metalloproteinase (MMP)-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), and vascular endothelial growth factor (VEGF), but increased TIMP-2 secretion in a concentration-dependent manner. In addition, ISL decreased the protein levels of integrin-α2, intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), and mRNA levels of uPA, MMP-9, VEGF, ICAM and integrin-α2. Furthermore, basal and EGF-induced activator protein (AP)-1 binding activity and phosphorylation of Jun N-terminal kinase (JNK), c-Jun and Akt were decreased after ISL treatment. However, phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase was not altered. The JNK inhibitor SP600125 inhibited basal and EGF-induced secretion of uPA, VEGF, MMP-9 and TIMP-1, as well as AP-1 DNA binding activity and cell migration. These results provide evidence for the role of ISL as a potent antimetastatic agent, which can markedly inhibit the metastatic and invasive capacity of prostate cancer cells. The inhibition of JNK/AP-1 signaling may be one of the mechanisms by which ISL inhibits cancer cell invasion and migration.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Matrix metalloproteinase-9 (MMP-9) plays an important role in mediating the invasion and angiogenic process of malignant gliomas. This study was undertaken to determine if an isoflavone metabolite, irisolidone, inhibits MMP-9 expression in human astroglioma cells. Irisolidone was found to inhibit the secretion and protein expression of MMP-9 induced by PMA in U87 MG glioma cells, accompanied by the inhibition of MMP-9 mRNA expression and promoter activity. Further mechanistic studies revealed that irisolidone inhibits the binding of NF-κB and AP-1 to the MMP-9 promoter and suppresses the PMA-induced phosphorylation of ERK and JNK, which are upstream signaling molecules in MMP-9 expression. The Matrigel-invasion assay showed that irisolidone suppresses the in vitro invasiveness of glioma cells. Therefore, the strong inhibition of MMP-9 expression by irisolidone might be a potential therapeutic modality for controlling the growth and invasiveness of gliomas.  相似文献   

15.
16.
17.
18.
Collagenase-1 (matrix metalloproteinase-1, MMP-1) is expressed by several types of cells, including fibroblasts, and apparently plays an important role in the remodeling of collagenous extracellular matrix in various physiologic and pathologic situations. Here, we have examined the molecular mechanisms of the activation of fibroblast MMP-1 gene expression by a naturally occurring non-phorbol ester type tumor promoter okadaic acid (OA), a potent inhibitor of serine/threonine protein phosphatase 2A. We show that in fibroblasts OA activates three distinct subgroups of mitogen activated protein kinases (MAPKs): extracellular signal-regulated kinase 1,2 (ERK 1,2), c-Jun N-terminal-kinase/stress-activated protein kinase (JNK/SAPK) and p38. Activation of MMP-1 promoter by OA is entirely blocked by overexpression of dual-specificity MAPK phosphatase CL100. In addition, expression of kinase-deficient forms of ERK 1,2, SAPKβ, p38, or JNK/SAPK kinase SEK1 strongly inhibited OA-elicited activation of MMP-1 promoter. OA-elicited enhancement of MMP-1 mRNA abundance was also strongly prevented by two chemical MAPK inhibitors: PD 98059, a specific inhibitor of the activation of ERK1,2 kinases MEK1,2; and SB 203580, a selective inhibitor of p38 activity. Results of this study show that MMP-1 gene expression in fibroblasts is coordinately regulated by ERK1,2, JNK/SAPK, and p38 MAPKs and suggest an important role for the stress-activated MAPKs JNK/SAPK and p38 in the activation of MMP-1 gene expression. Based on these observations, it is conceivable that specific inhibition of stress-activated MAPK pathways may serve as a novel therapeutic target for inhibiting degradation of collagenous extracellular matrix.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号