首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
越冬池冰下浮游生物的研究   总被引:4,自引:0,他引:4  
越冬池冰下浮游植物主要由光甲藻、隐藻、小环藻、壳虫藻、衣藻、棕鞭藻等优势属组成,重点试验池平均生物量为38.8±13.06毫克/升。与明水期相比其种数较少而现存量不低;原生动物、桡足类和轮虫类构成冰下主要浮游动物。重点池平均生物量为6.21±6.52毫克/升,其中轮虫量最高。冰下浮游植物量各水层不同,86.7%的越冬池表层多于底层,另13.3%底层多于表层。光甲藻等鞭毛藻有明显的昼夜垂直移动。冰下浮游生物量有月变化和年变化,文中分析了引起这些变化的生态因素,同时探讨了与生物增氧有关的几个问题。  相似文献   

2.
根据2013 年7 月(夏季)和11 月(秋季)的调查数据, 对榕江流域揭阳至汕头段浮游植物物种组成、时间分布及多样性等群落结构特征进行了分析。结果显示: 共鉴定出浮游植物5 门106 种, 其中, 硅藻54 种、绿藻32 种、蓝藻12 种、甲藻和裸藻各4 种, 分别占种类总数的50.94%、30.19%、11.32%和3.77%。浮游植物种类数目秋季(79 种)多于夏季(52 种), 夏季丰度(12571.94×104 细胞·m-3)是秋季(342.30×104 细胞·m-3)的36.73 倍。丰度在空间上表现出夏季呈无规则的变化, 秋季则呈上游站位高于下游站位的变化规律。优势种夏季主要为蓝绿藻类的微小色球藻Chroococcus minutus、细小隐球藻Aphanocapsa elachista、月牙藻Selenastrum bibraianum 和普通小球藻Chlorella vulgaris 等6 种; 秋季主要为颗粒直链藻Aulacoseira granulata 和胶网藻Dictyosphaerium ehrenbergianum 2 种。Shannon-Wiener 多样性指数H′、Pielou 均匀度指数J′和Margalef 物种丰富度指数D 在秋季(2.42, 0.60, 2.79)高于夏季(1.46, 0.36, 1.12)。榕江流域水质状况的生物多样性指数综合评价显示, 该流域水质总体属于中度污染型, 生态环境受到了一定程度的污染破坏。  相似文献   

3.
哈尔滨二龙山水库浮游植物及水体污染状况的研究   总被引:1,自引:0,他引:1  
报道了2000 年1 月、5 月、8 月、10 月四次对哈尔滨市境内的二龙山水库的浮游植物的调查结果。共发现浮游植物46 属55 种, 其中种类最多的是绿藻和硅藻。水库四季的平均浮游藻类数量为438.46 万个/升, 绿藻占46.98%, 硅藻占44.74%, 隐藻占6.76%。优势种是平裂藻、小环藻、直链藻、针杆藻、纤维藻、空星藻、十字藻、蹄形藻、栅藻、隐藻等。对8 月份水库及上游河流的水质进行了监测和分析。根据上述结果对水质进行了评价, 并对二龙山库区的水土保持及可持续性发展进行了探讨。  相似文献   

4.
上海滴水湖两种枝角类对浮游植物群落牧食的模拟研究   总被引:1,自引:0,他引:1  
于2012年9月通过浮游动物添加实验,研究了大型溞(Daphnia magna)和隆腺溞(Daphnia carinata)对上海滴水湖浮游植物群落结构的影响。结果表明,实验组氨氮和可溶性活性磷浓度与空白组相比显著增加,大型溞组浮游植物密度较空白组降低了70.3%,隆腺溞组浮游植物密度较空白组降低了80.0%,叶绿素a浓度分别下降了80.4%和75.2%,叶绿素a与氨氮、可溶性活性磷呈显著相关性。浮游植物的群落结构较空白组也发生较大变化,硅藻、蓝藻和绿藻密度比例明显降低,隐藻、裸藻和甲藻在实验结束时没有检出,说明大型溞和隆线溞能有效控制水体中浮游植物密度,并能够对浮游植物群落结构产生影响。同时,附着藻类密度较空白组也有明显减少,说明大型溞和隆线溞对附着藻类也有一定的牧食作用。  相似文献   

5.
飞来峡水库蓄水初期营养状态及浮游生物分布特征   总被引:12,自引:5,他引:12  
于2000年丰水期和枯水期调查分析了新建河流型水库-飞来峡水库在蓄水初期的营养状态及浮游生物特征。结果表明:水库处于营养累积高峰期,已开始回落,但流域上游大量含磷废水使水库中磷含量继续上升,目前属于中营养型。共记录到浮游植物29种(属),以蓝藻门、绿藻门、硅藻门种类较多,其中丰水期以蓝藻和绿藻为主,枯水期是硅藻占优势,除大坝附近外,浮游植物两个季节密度变化不大,为0.39×106cells·L-1.浮游动物53种(属),其中包括僧帽溞和透明薄皮溞两种嗜寒性种类,丰度为52ind.·L-1,枯水期高于丰水期,数量以轮虫和无节幼体为多。  相似文献   

6.
安徽沱湖夏季浮游植物群落结构特征与环境因子关系   总被引:3,自引:0,他引:3  
为了揭示沱湖浮游植物群落结构特征及其与水环境因子的关系,于2016年7月(夏季),对沱湖流域上游至下游11个采样点浮游植物种类组成、细胞丰度、生物量等进行调查研究。结果显示,沱湖共有浮游植物96种(含变种),隶属8门48属,其中绿藻门(Chlorophyta)和硅藻门(Bacillariophyta)种类最多,绿藻门有23属39种,占总种数的40.63%,硅藻门有7属20种,占总种数的20.83%;其次为裸藻门(Euglenophyta),有5属17种,占总种数的17.71%,蓝藻门(Cyanophyta) 8属14种,占14.58%;甲藻门(Pyrrophyta) 2属2种,隐藻门(Cryptophyta) 1属2种,各占总种数的2.08%,黄藻门(Xanthophyta)与金藻门(Chrysophyta)均有1属1种,均占总种数的1.04%。绿藻和硅藻类物种在沱湖浮游植物群落结构中处于优势地位,沱湖夏季浮游植物种类组成表现为绿藻-硅藻型。沱湖夏季浮游植物细胞丰度与生物量从上游到下游呈逐渐增加趋势,细胞丰度与生物量平均值分别为4.022×106cells/L与3.046 mg/L,蓝藻门和绿藻门类群为沱湖浮游植物细胞丰度主体,硅藻门和裸藻门类群为沱湖浮游植物生物量的主体;上游浮游植物多样性指数与均匀度指数均略高于下游采样点,沱湖水质呈β中污型-无污染型,上游水质优于下游水质。浮游植物群落结构与水环境因子的典型对应分析(CCA)结果表明,电导率、透明度、水深及pH值等环境因子与沱湖夏季浮游植物群落结构有较强的相关性。  相似文献   

7.
为了掌握卧龙湖浮游生物群落特征和环境影响因子, 分别于2016 年春、夏、秋、冬4 个季节进行了采样调查。共检测到卧龙湖浮游植物7 门57 种, 其中绿藻门种类最多, 为26 种, 硅藻门18 种, 蓝藻门8 种, 裸藻门2 种, 甲藻门、金藻门、隐藻门各1 种, 主要优势种有类颤藻鱼腥藻(Anabeana osicellariordes)、梅尼小环藻(Cyclotellameneghiniana)、颗粒直链藻(Melosira granulata)、尖针杆藻(Synedra acus)、螺旋形纤维藻(Ankistrodesmus spiralis)、四尾栅藻(Scenedesmus quadricauda)、四足十字藻(Crucigenia tetrapedia)。浮游植物种类组成随季节变化而演替, 密度变化范围是841.1×104-8907.3×104 cells·L-1。水温是浮游植物种类组成和密度变化的主要影响因子。共鉴定浮游动物4 个门类18 种, 分别是原生动物、轮虫类、枝角类和桡足类。其中轮虫类种类数最多, 共10 种, 原生动物和枝角类各3 种, 桡足类2 种。主要优势种有萼花臂尾轮虫(Brachionus calyciflorus)、螺形龟甲轮虫(Keratella cochlearis)、针簇多肢轮虫(Polyarthra trigla)、长三肢轮虫(Filinia longisela)、长额象鼻溞(Bosmina longirostris)。水温和浮游植物密度是浮游动物种类组成和密度变化的主要驱动因子。浮游植物密度及优势种、营养状态指数(TSI)都表明卧龙湖处于富营养状态。  相似文献   

8.
于2006年5月至2007年2月之间,对南麂列岛海域的浮游植物类群进行了4个季节的调查,分析了该海域浮游植物的种类组成、优势种类、群落结构以及水平分布等特征参数的季节变化。共鉴定浮游植物80种,隶属于4个门,硅藻种类最多,甲藻其次。浮游植物可划分为3个生态类群,以广温类群为主。春季和夏季分别以三角棘原甲藻和中肋骨条藻为绝对优势种,秋冬季的优势种类组成多样化。共鉴定57种赤潮生物,占浮游植物种类数的71.25%。调查期间,三角棘原甲藻和中肋骨条藻分别于春季和夏季形成赤潮。浮游植物的物种丰富度呈现春、夏、秋、冬递减的趋势。浮游植物细胞丰度的年平均值为1.03×106cells/L,春夏季显著高于秋冬季。春季和夏季时,浮游植物高值区集中在南麂岛西北近岸海域;秋季和冬季时,浮游植物高值区相对集中在南麂岛东南近岸海域。浮游植物群落的多样性指数(H')以秋季最高,冬季最低。春季的三角棘原甲藻赤潮期间,水体中N/P值显著升高;夏季的中肋骨条藻赤潮期间,水体中N/P值显著降低。  相似文献   

9.
胡韧  雷腊梅  韩博平 《生态学报》2008,28(10):4652-4664
新丰江水库是我国第四大的水库,也是广东省最大的水库和重要的水源地。于2004~2005年2月一次调查了新丰江水库水文、水质和浮游植物分布,分析了浮游植物群落季节动态特征。新丰江水库浮游植物生物量比较低,在0.037—1.497mg·L^-1之间变化。浮游植物种类较多,11次采样共检到158种。在丰度上,水库浮游植物主要以小环藻、蓝纤维藻、小球藻和纤维藻等优势种为主,而在生物量上则以微小多甲藻为优势。浮游植物组成随季节变化而不同,春季以硅藻、甲藻和绿藻为优势类群;夏季以蓝藻、绿藻和硅藻为优势类群;秋季蓝、绿藻减少而硅藻和甲藻增加。2004年的浮游植物季节性变化更为明显,有从硅藻-绿藻优势(2月和4月份),到蓝藻-绿藻优势(6月和8月份),到混合优势(10月份)和金藻优势(12月份)这样一个变化过程。2005年硅藻的相对丰度比2004年高出很多。两年浮游植物组成的差异与两年的降水量有关。水动力学对丰水期(6~8月份)浮游植物组成结构有较大影响,导致硅藻和绿藻相对丰度的增加。与温带贫营养型水库相比,新丰江水库的浮游植物群落具有春季和秋季种类多、夏季的蓝藻种类丰富的特点。从细胞大小分布上看,小于20μm浮游植物是生物量的主要贡献者,其次是大于45μm的浮游植物。在粒径小于20μm的浮游植物中,微小多甲藻是最主要的贡献者。浮游植物群落的大小分布受水动力学条件和营养盐浓度动态的影响。  相似文献   

10.
本文简要报道了湖北武昌县牛山湖1984—1986年浮游动物的种类组成、数量、生物量的季节变动和分布。观察表明,牛山湖有浮游动物47属,89种,其中多数为广温性世界种。浮游动物的平均数量为1574个/升(507—3025个/升),其中以原生动物、轮虫占绝对优势,甲壳动物次之;平均生物量为0.6082毫克/升(0.3378—1.0164毫克/升),以甲壳动物为主。牛山湖浮游动物的现存量有逐年减少的趋势,据推测与鱼的摄食作用有关。为此建议应适当减少滤食性鱼类的放养量。  相似文献   

11.
1. The major aim of this study was to test the hypothesis that nutrient enrichment and the introduction of the Nile tilapia (Oreochromis niloticus), an exotic omnivorous filter‐feeding fish, operate interdependently to regulate plankton communities and water transparency of a tropical reservoir in the semi‐arid northeastern Brazil. 2. A field experiment was performed for 5 weeks in 20 enclosures (9.8 m3) to which four treatments were randomly allocated: tilapia addition (F), nutrient addition (N), tilapia and nutrient addition (F + N) and a control treatment with no tilapia or nutrient addition (C). A two‐way repeated measures anova was undertaken to test for time, tilapia and nutrient effects and their interactions on water transparency, total phosphorus and total nitrogen concentrations, phytoplankton biovolume and zooplankton biomass. 3. Nutrient addition had no effect except on rotifer biomass, but there were significant fish effects on the biomass of total zooplankton, copepod nauplii, rotifers, cladocerans and calanoid copepods and on the biovolume of total phytoplankton, large algae (GALD ≥ 50 μm), Bacillariophyta and Zygnemaphyceae and on Secchi depth. In addition, we found significant interaction effects between tilapia and nutrients on Secchi depth and rotifers. Overall, tilapia decreased the biomass of most zooplankton taxa and large algae (diatoms) and decreased water transparency, while nutrient enrichment increased the biomass of rotifers, but only in the absence of tilapia. 4. In conclusion, the influence of fish on the reservoir plankton community and water transparency was significant and even greater than that of nutrient loading. This suggests that biomanipulation of filter‐feeding tilapias may be of importance for water quality management of eutrophic reservoirs in tropical semi‐arid regions.  相似文献   

12.
Do the effects of piscivorous largemouth bass cascade to the plankton?   总被引:1,自引:1,他引:0  
Ecologists have hypothesized that an increase in the biomass of piscivorous fish in lakes will cause a decrease in populations of planktivorous fish, an increase in the size of herbivorous zooplankton and a decrease in the biomass of phytoplankton. Here we present an experimental test of whether the effects of largemouth bass (Micropterus salmoides) cascade to the planktivorous fish, zooplankton and phytoplankton of a 15-ha water storage reservoir. A pilot study indicated that the reservoir was eutrophic with dense populations of planktivorous fish dominated by threadfin shad (Dorosoma petenense). No piscovorous fish were present in the reservoir. We conducted a one-month mesocosm experiment using water and plankton from the reservoir showing that the presence of threadfin shad reduced large-sized zooplankton and increased the productivity and biomass of phytoplankton. To test whether the effects of piscivorous fish could cascade to the plankton, we assessed the effects of the addition of piscivorous largemouth bass on the planktivorous fish, zooplankton and biomass of phytoplankton of the reservoir by monitoring the reservoir during the year before and the two years after largemouth bass were stocked. In the second year after the addition of largemouth bass, the number of planktivorous fish decreased and the relative abundance of threadfin shad declined. Although the abundance of cladocerans increased after the addition of largemouth bass, the average size of zooplankton did not change. We did not detect changes in chlorophyll a, Secchi depth, or concentrations of total phosphorus and total nitrogen as a result of the addition of largemouth bass.  相似文献   

13.
Productivity and community structure of phytoplankton and zooplankton are influenced by hydrologic disturbances in many ways. In a recent modeling study it was suggested that pulsed inflows might enhance zooplankton performance, curb accumulation of phytoplankton accumulated biomass, and promote phytoplankton species diversity. We tested these predictions by performing microcosm experiments on natural plankton assemblages from the Nueces Delta, TX, USA. On three occasions (March, June, and September 2001), experiments of semi-continuous and flow-through design were conducted using natural plankton assemblages. We investigated the effect of two different inflow and nutrient loading regimes on zooplankton biomass, and phytoplankton biomass and diversity, i.e., continuous and pulsed inflows of 3 day frequency. Despite differences in initial community structure on these three occasions, as well as the very different communities that arose between experimental designs, our findings showed that pulsed inflows altered plankton dynamics. In all cases, pulsed inflows resulted in greater zooplankton biomass. In most cases, pulsed inflows resulted in lower phytoplankton biomass and higher diversity. We speculate that greater phytoplankton diversity in the pulsed flow treatments favored selectively feeding zooplankton, whose better performance prevented higher accumulation of phytoplankton biomass.  相似文献   

14.
Marine birnaviruses (MABVs) infect a wide range of fish and shellfish, yet their mode of transmission is still unclear. To determine whether marine plankton serve as a vector for MABVs, we examined plankton collected from the Uwa Sea, Japan. The phytoplankton and zooplankton were collected monthly, at depths of 0 and 40 m, from May to November 2001. Detection of the MABV genome was carried out using 2-step PCR and virus isolation. Viral genome was detected in zooplankton collected at 0 m depth in September and at 40 m depth in November. The virus could not be isolated in the PCR-positive samples. These results suggest that zooplankton may act as a vector of MABVs, although the infective and/or accumulated virus titer in zooplankton was low.  相似文献   

15.
Summary Deep profiles of particulate organic matter, microplankton (phytoplankton and bacteria), zooplankton and their metabolic activities were investigated during two summer voyages to the eastern Canadian Arctic. Magnitudes and depth distributions were similar in many respects to observations from temperate and tropical waters. Strong gradients in most properties were observed in the upper 50–100 m and subsurface maxima were generally associated with the upper mixed-layer (>50 m). In addition to the general vertical decreases in plankton biomass and metabolic activity there was evidence for both rapid transport (sinking) of organic matter and for enhanced (above background) levels of microbial metabolic activity in deep waters (>500 m). Zooplankton depth distributions differed from the pattern generally observed at lower latitudes; in the Arctic, zooplankton abundance decreased to a lesser degree with depth than particulate organics and microplankton. The overwintering behavior of high-latitude zooplankton appeared to be the best explanation for their relatively high abundance at depth. Despite this, however, zooplankton apparently contributed little to the total column community metabolism.  相似文献   

16.
The Argazi reservoir on the Miass River, the oldest reservoir in the Southern Urals, has been investigated. In total 49 species and forms of zooplankton are identified, including new and rare species for the fauna of the Urals. Throughout the reservoir zooplankton has high species diversity and considerable biomass (up to 11 g/m3). Rotifers are the leading group in the plankton of the reservoir. Compared to the early 1960s, the abundance and biomass of zooplankton has increased by 5–10 times. The disappearance of some plankton forms and the emergence of new ones, as well as an increased number of rotifers and some crustaceans by 1–2 orders of magnitude, are noted. The influence of three main factors that could lead to long-term changes in zooplankton—eutrophication, heavy metals pollution, and global warming—are considered. The last factor seems to be the most important.  相似文献   

17.
1. Over a 1-year period, twenty controlled experiments were performed using small mesocosms (20-l clear plastic carboys) and plankton communities collected from four sites in shallow, subtropical Lake Okeechobee, Florida. In replicated treatments, macrozooplankton grazers were excluded by size fractionation (115 μm), and/or nutrients (N and P) were added, and impacts on phytoplankton biomass and productivity were measured after 3-day incubations.
2. In most experiments (fifteen out of twenty), there was no significant effect of zooplankton exclusion on phytoplankton biomass or productivity, but there were significant increases in those attributes due to nutrient additions. The magnitude of the responses was a function of light availability at the collection sites.
3. In three experiments, zooplankton exclusion led to declines in phytoplankton biomass and productivity, suggesting that animals may sometimes have net positive effects on the phytoplankton, perhaps via nutrient recycling.
4. In only two experiments was there evidence of net negative impacts of grazers on the phytoplankton. In both instances, cladocerans ( Daphnia ambigua and Eubosmina tubicen ) were dominant in the zooplankton. However, the increases in chlorophyll a due to zooplankton exclusion were small (5–20%), probably because of the small size and relatively low grazing rates of the cladocerans.
5. The results support the hypothesis that phytoplankton biomass in Lake Okeechobee is little affected by herbivorous macrozooplankton. This may be a common feature of lowland tropical and subtropical lakes.  相似文献   

18.
The abundance and biomass of the main components of the microbial plankton food web (“microbial loop”)—heterotrophic bacteria, phototrophic picoplankton and nanoplankton, heterotrophic nanoflagellates, ciliates and viruses, production of phytoplankton and bacterioplankton, bacterivory of nanoflagellates, bacterial lysis by viruses, and the species composition of protists—have been determined in summer time in the Sheksna Reservoir (the Upper Volga basin). A total of 34 species of heterotrophic nanoflagellates from 15 taxa and 15 species of ciliates from 4 classes are identified. In different parts of the reservoir, the biomass of the microbial community varies from 26.2 to 64.3% (on average 45.5%) of the total plankton biomass. Heterotrophic bacteria are the main component of the microbial community, averaging 63.9% of the total microbial biomass. They are the second (after the phytoplankton) component of the plankton and contribute on average 28.6% to the plankton biomass. The high ratio of the production of heterotrophic bacteria to the production of phytoplankton indicates the important role of bacteria, which transfer carbon of allochthonous dissolved organic substances to a food web of the reservoir.  相似文献   

19.
1. Over a 1-year period, twenty controlled experiments were performed using small mesocosms (20-l clear plastic carboys) and plankton communities collected from four sites in shallow, subtropical Lake Okeechobee, Florida. In replicated treatments, macrozooplankton grazers were excluded by size fractionation (115 μm), and/or nutrients (N and P) were added, and impacts on phytoplankton biomass and productivity were measured after 3-day incubations.
2. In most experiments (fifteen out of twenty), there was no significant effect of zooplankton exclusion on phytoplankton biomass or productivity, but there were significant increases in those attributes due to nutrient additions. The magnitude of the responses was a function of light availability at the collection sites.
3. In three experiments, zooplankton exclusion led to declines in phytoplankton biomass and productivity, suggesting that animals may sometimes have net positive effects on the phytoplankton, perhaps via nutrient recycling.
4. In only two experiments was there evidence of net negative impacts of grazers on the phytoplankton. In both instances, cladocerans ( Daphnia ambigua and Eubosmina tubicen ) were dominant in the zooplankton. However, the increases in chlorophyll a due to zooplankton exclusion were small (5–20%), probably because of the small size and relatively low grazing rates of the cladocerans.
5. The results support the hypothesis that phytoplankton biomass in Lake Okeechobee is little affected by herbivorous macrozooplankton. This may be a common feature of lowland tropical and subtropical lakes.  相似文献   

20.
Movement of plankton through lake-stream systems   总被引:2,自引:0,他引:2  
1. River plankton are often assumed to come from upstream lakes, but the factors controlling the movement of plankton between lakes and rivers into outflow streams are unclear. We tested the possibility that the physical structure of the littoral zone near the lake outlet (depth, presence of macrophytes) and diurnal differences in plankton composition at the lake surface influence the movement of plankton from the lake into the stream and determine their persistence downstream. 2. Zooplankton and phytoplankton biomass, community composition and mean body size were compared between two deep lakes without macrophytes at the lake edge and two shallow lakes with macrophytes at the lake edge. Samples were collected day and night on three dates, in the lake centre, in the littoral zone adjacent to the lake outlet, at the outlet and at two sites downstream in Algonquin Park, Ontario, Canada. 3. The morphology of lake edges clearly affects the movement of lake zooplankton into outlet streams. Outlets draining deeper littoral zones had higher zooplankton biomass than shallow littoral outlets (P < 0.0001), but these differences disappeared within 50 m downstream of the lake. There was no difference in mean zooplankton body size among lake outlets or between littoral and outlet samples. However, shallow littoral zones were dominated by cyclopoid copepods and deeper littoral zones were dominated by Bosmina longirostris. In contrast, phytoplankton biomass entering the outlet was similar to that found within the lake and did not vary with lake outlet morphology. These effects were consistent across several sampling weeks and were not affected by surface zooplankton biomass changes associated with diurnal vertical migration in the lake centre. 4. A comparison with published river zooplankton data suggests that zooplankton are rapidly eliminated from shallow outlet streams (≤1 m deep) but persist in most deeper outlet rivers (≥2 m deep). Because the depth of an outlet river determines downstream zooplankton community development, the contribution of lakes to river plankton communities may be influenced by the location of each lake within the drainage basin. These findings suggest that lake and outflow physical structure influences connection strength between spatially successive habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号