首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Residues 2, 6, 8 and 10 of Mnt repressor are the major determinants of operator DNA binding and recognition. Here, we investigate the interaction of wild-type Mnt and mutants bearing the Arg2----Lys, His6----Ala, Asn8----Ala and Arg10----Lys mutations with operator DNA modified by methylation or by symmetric base substitutions. The wild-type pattern of methylation interference is altered in specific ways for each of the mutant proteins. In addition, some of the mutant proteins show a 'loss of contact' phenotype with specific mutant operators. Taken together, these and previous results predict the following contacts between side chains in the Mnt tetramer and operator DNA: Arg2 recognizes the guanines at operator positions 10 and 12; His6 contacts the guanines at operator positions 5 and 17; Asn8 contacts operator positions 4, 7, 15 and 18; Arg10 contacts the guanines at operator positions 8 and 14. The proposed contacts can be accommodated in a structural model in which the anti-parallel beta-sheet motifs of Mnt dimers lie in the major grooves of each operator half-site, centered over pseudo-symmetry axes that are 5.5 bp from the central dyad axis of the operator.  相似文献   

2.
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.  相似文献   

3.
A model is suggested for the lac repressor binding to the lac operator in which the repressor polypeptide chain sequences from Gly 14 to Ala 32 and from Ala 53 to Leu 71 are involved in specific interaction with operator DNA. A correspondence between the protein and DNA sequences is found which explains specificity of the repressor binding to the lac operator. The model can be extended to describe specific binding of other regulatory proteins to DNA.  相似文献   

4.
The carboxyl-terminal sequence of the lac repressor protein contains heptad repeats of leucines at positions 342, 349, and 356 that are required for tetramer assembly, as substitution of these leucine residues yields solely dimeric species (Chakerian, A. E., Tesmer, V. M., Manly, S. P., Brackett, J. K., Lynch, M. J., Hoh, J. T., and Matthews, K. S. (1991) J. Biol. Chem. 266, 1371-1374; Alberti, S., Oehler, S., von Wilcken-Bergmann, B., Kr?mer, H., and Müller-Hill, B. (1991) New Biol. 3, 57-62). To further investigate this region, which may form a leucine zipper motif, a family of lac repressor carboxyl-terminal deletion mutants eliminating the last 4, 5, 11, 18, and 32 amino acids (aa) has been constructed. The -4 aa mutant, in which all of the leucines in the presumed leucine zipper are intact, is tetrameric and displays operator and inducer binding properties similar to wild-type repressor. The -5 aa, -11 aa, -18 aa, and -32 aa deletion mutants, depleted of 1, 2, or all 3 of the leucines in the heptad repeats, are all dimeric, as demonstrated by gel filtration chromatography. Circular dichroism spectra and protease digestion studies indicate similar secondary/tertiary structures for the mutant and wild-type proteins. Differences in reaction with a monoclonal antibody specific for a subunit interface are observed for the dimeric versus tetrameric proteins, indicative of exposure of the target epitope as a consequence of deletion. Inducer binding properties of the deletion mutants are similar to wild-type tetrameric repressor at neutral pH. Only small differences in affinity and cooperativity from wild-type are evident at elevated pH; thus, the cooperative unit within the tetramer appears to be the dimer. "Apparent" operator binding affinity for the dimeric proteins is diminished, although minimal change in operator dissociation rate constants was observed. The diminution in apparent operator affinity may therefore derive from either 1) dissociation of the dimeric mutants to monomer generating a linked equilibrium or 2) alterations in intrinsic operator affinity of the dimers; the former explanation is favored. This detailed characterization of the purified mutant proteins confirms that the carboxyl-terminal region is involved in the dimer-dimer interface and demonstrates that cooperativity for inducer binding is contained within the dimer unit of the tetramer structure.  相似文献   

5.
Falcon CM  Matthews KS 《Biochemistry》2000,39(36):11074-11083
The mechanism by which genetic regulatory proteins discern specific target DNA sequences remains a major area of inquiry. To explore in more detail the interplay between DNA and protein sequence, we have examined binding of variant lac operator DNA sequences to a series of mutant lactose repressor proteins (LacI). These proteins were altered in the C-terminus of the hinge region that links the N-terminal DNA binding and core sugar binding domains. Variant operators differed from the wild-type operator, O(1), in spacing and/or symmetry of the half-sites that contact the LacI N-terminal DNA binding domain. Binding of wild-type and mutant proteins was affected differentially by variations in operator sequence and symmetry. While the mutant series exhibits a 10(4)-fold range in binding affinity for O(1) operator, only a approximately 20-fold difference in affinity is observed for a completely symmetric operator, O(sym), used widely in studies of the LacI protein. Further, DNA sequence influenced allosteric response for these proteins. Binding of this LacI mutant series to other variant operator DNA sequences indicated the importance of symmetry-related bases, spacing, and the central base pair sequence in high affinity complex formation. Conformational flexibility in the DNA and other aspects of the structure influenced by the sequence may establish the binding environment for protein and determine both affinity and potential for allostery.  相似文献   

6.
A system has been developed for facile generation and characterization of mutant lac operator sites, free of competing pseudo operator sequences. The interaction of lac repressor with these sites has been investigated by the nitrocellulose filter binding assay. The equilibrium binding affinity for each of three single-site changes was reduced by more than three orders of magnitude relative to the wild-type operator under standard assay conditions. The free-energy changes associated with single base-pair substitutions are not additive. We propose that adaptations in the recognition surface of the repressor involving significant trade-offs between electrostatic versus non-electrostatic interactions and between enthalpic versus entropic contributions to the binding free energy occur, in order to achieve the most stable complex with a given DNA sequence.  相似文献   

7.
To analyze the DNA binding domain of E coli LexA repressor and to test whether the repressor binds as a dimer to DNA, negative dominant lexA mutations affecting the binding domain have been isolated. A large number of amino acid substitutions between amino acid positions 39 and 46 were introduced using cassette mutagenesis. Mutants defective in DNA binding were identified and then examined for dominance to lexA+. A number of substitutions weakened repressor function partially, whereas other substitutions led to a repressor with no demonstrable activity and a defective dominant phenotype. Since the LexA binding site has dyad symmetry, we infer that this dominance results from interaction of monomers of wild-type LexA protein with mutant monomers and that an oligomeric form of repressor binds to operator. The binding of LexA protein to operator DNA was investigated further using a mutant protein, LexA408, which recognizes a symmetrically altered operator mutant but not wild-type operator. A mixture of mutant LexA408 and LexA+ proteins, but neither individual protein, bound to a hybrid recA operator consisting of mutant and wild-type operator half sites. These results suggest that at least 1 LexA protein monomer interacts with each operator half site. We discuss the role of LexA oligomer formation in binding of LexA to operator DNA.  相似文献   

8.
Based on primary sequence homology between the lactose repressor protein and periplasmic sugar-binding proteins (Müller-Hill, B. (1983) Nature 302, 163-164), a hypothetical sugar-binding site for the lac repressor was proposed using the solved x-ray crystallographic structure of the arabinose-binding protein (ABP) (Sams, C. F., Vyas, N. K., Quiocho, F. A., and Matthews, K. S. (1984) Nature 310, 429-430). By analogy to Arg151 in the ABP sugar site, Arg197 is predicted to play an important role in lac repressor binding to inducer sugars. Hydrogen bonding occurs between Arg151 and the ring oxygen and 4-hydroxyl of the sugar ligand, two backbone carbonyls, and a side chain in ABP, and similar interactions in the lac repressor would be anticipated. To test this hypothesis, Arg197 in the lac repressor protein was altered by oligonucleotide-directed site-specific mutagenesis to substitute Gly, Leu, or Lys. Introduction of these substitutions at position 197 had no effect on operator binding parameters of the isolated mutant proteins, whereas the affinity for inducer was dramatically decreased, consistent with in vivo phenotypic behavior obtained by suppression of nonsense mutations at this site (Kleina, L. G., and Miller, J. H. (1990) J. Mol. Biol. 212, 295-318). Inducer binding affinity was reduced approximately 3 orders of magnitude for Leu, Gly, or Lys substitutions, corresponding to a loss of 50% of the free energy of binding. The pH shift characteristic of wild-type repressor is conserved in these mutants. Circular dichroic spectra demonstrated no significant alterations in secondary structure for these mutants. Thus, the primary effect of substitution for Arg197 is a very significant decrease in the affinity for inducer sugars. Arginine is uniquely able to make the multiple contacts found in the ABP sugar site, and we conclude that this residue plays a similar role in sugar binding for lactose repressor protein. These results provide experimental validation for the proposed homology between ABP and the lac repressor and suggest that homology with ABP may be employed to generate additional insight into the structure and function of this regulatory protein.  相似文献   

9.
The hinge-region of the lac repressor plays an important role in the models for induction and DNA looping in the lac operon. When lac repressor is bound to a tight-binding symmetric operator, this region forms an alpha-helix that induces bending of the operator. The presence of the hinge-helices is questioned by previous data that suggest that the repressor does not bend the wild-type operator. We show that in the wild-type complex the hinge-helices are formed and the DNA is bent, similar to the symmetric complex. Furthermore, our data show differences in the binding of the DNA binding domains to the half-sites of the wild-type operator and reveal the role of the central base-pair of the wild-type operator in the repressor-operator interaction. The differences in binding to the operator half-sites are incorporated into a model that explains the relative affinities of the repressor for various lac operator sequences that contain left and right half-sites with different spacer lengths.  相似文献   

10.
Interaction of mutant lambda repressors with operator and non-operator DNA   总被引:6,自引:0,他引:6  
We have described a set of mutations that alter side-chains on the operator binding surface of lambda repressor. In this paper, we study the interactions of 12 purified mutant repressors with operator and non-operator DNA. The mutant proteins have operator affinities that are reduced from tenfold to greater than 10,000-fold compared to wild-type. Nine of the mutants have affinities for non-operator DNA that are similar to wild-type, two mutants show decreased non-specific binding, and one mutant has increased affinity for non-operator DNA. We discuss these findings in terms of the structural and energetic contributions of side-chain--DNA interactions, and show that certain contacts between the repressor and the operator backbone contribute both energy and specificity to the interaction.  相似文献   

11.
The tight-binding I12-X86 lac repressor binds to non-operator DNA in a sequence-specific fashion. Using the DNA of the E. coli I gene we have investigated these sequence-specific interactions and compared them to the operator binding of wild-type repressor. The specific, non-operator DNA interactions are sensitive to the inducer IPTG. One strong binding site in the I gene DNA was found to be one of two expected on the basis of their homology with the lac operator. The binding of I12-X86 repressor to this site was visualized using the footprinting technique, and found to be consistent with an operator-like binding configuration. The protection pattern extends into an adjacent sequence suggesting that two repressor tetramers are bound in tandem.  相似文献   

12.
H M Sasmor  J L Betz 《Gene》1990,89(1):1-6
We have analyzed lac repressor binding in vivo and in vitro to several symmetric lac operator sequences. Two features of the operator appear to be important for repressor binding: sequence, both of the operator and of its extended regions, and the spacing of the operator halves. Host mutations that alter DNA superhelical density (topA, gyrB) did not change the relative affinity of cloned symmetric operator sequences for repressor. Analysis by dimethylsulfate methylation and DNaseI digestion of repressor-operator complexes indicated that repressor makes symmetric contacts with the symmetric operator, in contrast to its contacts with the two halves of the natural operator.  相似文献   

13.
Mutations in the tryptophan-binding site of the trp repressor have been generated using site-directed mutagenesis. The selection of sites for alteration was based on the three-dimensional x-ray crystallographic structure (Schevitz, R. W., Otwinowski, Z., Joachimiak, A., Lawson, C. L., and Sigler, P. B. (1985) Nature 317, 782-786). The changes generated include Thr-44 to Ala (T44A), Arg-54 to Leu (R54L), Arg-54 to Lys (R54K), Arg-84 to Leu (R84L), and Arg-84 to Lys (R84K). The mutant proteins were purified and characterized in detail for their binding properties. Both tryptophan and operator DNA affinities for all five mutants were decreased. The R84L, R54K, and R54L mutants exhibited increases in Kd for operator DNA relative to wild-type repressor ranging from approximately 10(3) to approximately 10(4), while R84K and T44A exhibited increases of 10- to 100-fold. This diminution in DNA binding activity derives at least in part from diminished affinity for tryptophan, although decreased affinity for nonspecific DNA was also observed for these mutant proteins. Tryptophan binding was not detectable by equilibrium dialysis for most of the mutant proteins, but this activity was measurable for several of the altered proteins by monitoring the fluorescence decrease associated with the displacement of 1-anilino-8-naphthalenesulfonate from the tryptophan-binding site (Chou, W.-Y., and Matthews, K. S. (1989) J. Biol. Chem. 264, 18314-18319). These measurements revealed that tryptophan bound to R84K, T44A, and R84L repressors with Kd values 1.5- to 13-fold higher than that for wild-type repressor. It was not possible to detect tryptophan binding to R54K and R54L even using the fluorescence assay. Circular dichroism spectra demonstrated that the mutants and the wild-type repressor possess similar secondary structural features. The results of this selected substitution in the tryptophan-binding site are readily interpreted based on the x-ray structural analysis.  相似文献   

14.
Targeting the Escherichia coli lac repressor to the mammalian cell nucleus   总被引:2,自引:0,他引:2  
M C Hu  N Davidson 《Gene》1991,99(2):141-150
We have previously shown that about 90% of total Escherichia coli lac repressor synthesized in mammalian cells is located in the cytoplasm [Hu and Davidson, Cell 48 (1987) 555-566]. To target a functional lac repressor to the nucleus, we mutated 10 nucleotides at the 3' end of the coding sequence, thus adding the nuclear localization signal of the simian virus 40 large-T antigen to the C terminus of the repressor. The mutant lacI gene and the wild-type (wt) gene, both in standard animal cell expression vectors, driven by the promoter of the Rous sarcoma virus long terminal repeat, were stably transfected into three rodent cell lines. In confirmation of our previous results, only about 10% of the wt repressor, but all of the mutant protein, was localized in the nucleus. DNase I footprint analyses showed that the mutant repressor retained the same operator DNA-binding specificity as wt repressor. Furthermore, both repressor-operator complexes could be dissociated by addition of isopropyl-beta-D-thiogalactopyranoside in vitro. However, the ratio of number of repressor molecules per nucleus that, by in vitro assay, could bind to the operator sequence to the number of monomer repressor polypeptides per nucleus, as determined by Western blotting, was about 1:4 for the wt repressor and about 1:30 for the mutant repressor. This suggests that: (a) the mutant repressor assembles into tetramers inefficiently; and/or (b) it has reduced binding affinity to the operator sequence; and/or (c) it has higher binding affinity to nonspecific DNA.  相似文献   

15.
The 31P NMR spectra of various 14-base-pair lac operators bound to both wild-type and mutant lac repressor headpiece proteins were analyzed to provide information on the backbone conformation in the complexes. The 31P NMR spectrum of a wild-type symmetrical operator, d(TGTGAGCGCTCACA)2, bound to the N-terminal 56-residue headpiece fragment of a Y7I mutant repressor was nearly identical to the spectrum of the same operator bound to the wild-type repressor headpiece. In contrast, the 31P NMR spectrum of the mutant operator, d(TATAGAGCGCTCATA)2, wild-type headpiece complex was significantly perturbed relative to the wild-type repressor-operator complex. The 31P chemical shifts of the phosphates of a second mutant operator, d(TGTGTGCGCACACA)2, showed small but specific changes upon complexation with either the wild-type or mutant headpiece. The 31P chemical shifts of the phosphates of a third mutant operator, d(TCTGAGCGCTCAGA)2, showed no perturbations upon addition of the wild-type headpiece. The 31P NMR results provide further evidence for predominant recognition of the 5'-strand of the 5'-TGTGA/3'-ACACT binding site in a 2:1 protein to headpiece complex. It is proposed that specific, strong-binding operator-protein complexes retain the inherent phosphate ester conformational flexibility of the operator itself, whereas the phosphate esters are conformationally restricted in the weak-binding operator-protein complexes. This retention of backbone torsional freedom in strong complexes is entropically favorable and provides a new (and speculative) mechanism for protein discrimination of different operator binding sites. It demonstrates the potential importance of phosphate geometry and flexibility on protein recognition and binding.  相似文献   

16.
J L Betz  M Z Fall 《Gene》1988,67(2):147-158
The specific binding of dominant-negative (I-d) lactose (lac) repressors to wild-type (wt) as well as mutant (Oc) lac operators has been examined to explore the sequence-specific interaction of the lac repressor with its target. Mutant lacI genes encoding substitutions in the N-terminal 60 amino acids (aa) were cloned in a derivative of plasmid pBR322. Twelve of these lacI-d missense mutations were transferred from F'lac episomes using general genetic recombination and molecular cloning, and nine lacI missense mutations were recloned from M13-lacI phages [Mott et al., Nucl. Acids Res. 12 (1984) 4139-4152]. The mutant repressors were examined for polypeptide size and stability, for binding the inducer isopropyl-beta-D-thiogalactoside (IPTG), as well as binding to wt operator. The mutant repressors' affinities for wt operator ranged from undetectable to about 1% that of wt repressor, and the mutant repressors varied in transdominance against repressor expressed from a chromosomal lacIq gene. Six of the I-d repressors were partially degraded in vivo. All repressors bound IPTG with approximately the affinity of wt repressor. Repressors having significant affinity for wt operator or with substitutions in the presumed operator recognition helix (aa 17-25) were examined in vivo for their affinities for a series of single site Oc operators. Whereas the Gly-18-, Ser-18- and Leu-18-substituted repressors showed altered specificity for position 7 of the operator [Ebright, Proc. Natl. Acad. Sci. USA 83 (1986) 303-307], the His-18 repressor did not affect specificity. This result may be related to the greater side-chain length of histidine compared to the other amino acid substitutions.  相似文献   

17.
We developed a general method for the enrichment and identification of sequence-specific DNA-binding proteins. A well-characterized protein-DNA interaction is used to isolate from crude cellular extracts or fractions thereof proteins which bind to specific DNA sequences; the method is based solely on this binding property of the proteins. The DNA sequence of interest, cloned adjacent to the lac operator DNA segment is incubated with a lac repressor-beta-galactosidase fusion protein which retains full operator and inducer binding properties. The DNA fragment bound to the lac repressor-beta-galactosidase fusion protein is precipitated by the addition of affinity-purified anti-beta-galactosidase immobilized on beads. This forms an affinity matrix for any proteins which might interact specifically with the DNA sequence cloned adjacent to the lac operator. When incubated with cellular extracts in the presence of excess competitor DNA, any protein(s) which specifically binds to the cloned DNA sequence of interest can be cleanly precipitated. When isopropyl-beta-D-thiogalactopyranoside is added, the lac repressor releases the bound DNA, and thus the protein-DNA complex consisting of the specific restriction fragment and any specific binding protein(s) is released, permitting the identification of the protein by standard biochemical techniques. We demonstrate the utility of this method with the lambda repressor, another well-characterized DNA-binding protein, as a model. In addition, with crude preparations of the yeast mitochondrial RNA polymerase, we identified a 70,000-molecular-weight peptide which binds specifically to the promoter region of the yeast mitochondrial 14S rRNA gene.  相似文献   

18.
19.
The isolation and characterization of altered repressors of the lac operon which have an increased affinity for an operator should give useful clues about the molecular basis for the very tight and specific interaction between repressor and operator. A selection system has been devised which allows the isolation of such repressor mutants. This system selects for mutant repressors which can overcome lac operator-constitutive (Oc) mutations. By using in vivo assays, 24 candidates were obtained which, compared with wild type, have an increased trans effect of their repressor on one or several Oc operators. Three of these candidates have been investigated in vitro; the affinity of their repressor for inducer was unchanged, whereas the affinity for wild-type operator was increased 15-, 86-, and 262-fold, respectively.  相似文献   

20.
Five tight-binding (Itb) mutants of the Escherichia coli lactose (lac) repressor have been characterized with regard to their non-specific affinity for DNA and their specific affinity for the wild-type operator and several sequence-altered (pseudo-) operators. Repressor-operator association rates were determined in the presence or absence of competitor DNA, dissociation rates of repressor from various DNA fragments were measured, and equilibrium competition for repressor binding was examined for several pseudo-operator DNAs. The mutant repressors exhibited increased non-specific affinity for DNA, and variable increases in affinity for sequence-altered operators. The known positions of amino acid substitutions for three of these Itb repressors support suggestions that residues 51 to 64 are important for operator recognition in addition to residues 1 to 50.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号