首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The safety of biological control is a contentious issue. We suggest that constructing and analyzing food webs may be a valuable addition to standard biological control research techniques, as they offer a means of assessing the post-release safety of control agents. Using preliminary data to demonstrate the value of food webs in biocontrol programs, we quantified the extent to which a key agent has infiltrated natural communities in Australia and, potentially, impacted on non-target species. Using these data, we also demonstrate how food webs can be used to generate testable hypotheses regarding indirect interactions between introduced agents and non-target species. We developed food webs in communities invaded to varying degrees by an exotic weed, bitou bush, Chrysanthemoides monilifera ssp. rotundata, and a key biocontrol agent for this weed in Australia, the tephritid fly, Mesoclanis polana. Three food webs were constructed during springtime showing the interactions between plants, seed-feeding insects and their parasitoids. One food web was constructed in a plot of native Australian vegetation that was free of bitou bush (‘bitou-free’), another in a plot of Australian vegetation surrounded by an invasion of bitou bush (‘bitou-threatened’) and a third from a plot infested with a monoculture of bitou bush (‘bitou-infested’). The bitou-free web contained 36 species, the bitou-threatened plot 9 species and the bitou-infested web contained 6 species. One native Australian herbivore attacked the seeds of bitou bush. M. polana, a seed-feeding fly, was heavily attacked by native parasitoids, these being more abundant than the parasitoids feeding on the native seed feeders. A surprising result is that none of the three species of native parasitoids reared from M. polana were reared from any of the native herbivores. The food webs revealed how a highly host-specific biocontrol agent, such as M. polana has the potential to change community structure by increasing the abundance of native parasitoids. The webs also suggest that indirect interactions between M. polana and native non-target species are possible, these been mediated by shared parasitoids. The experiments necessary to determine the presence of these interactions are outlined.  相似文献   

2.
We propose a comprehensive program to evaluate the post-release phase of biocontrol programs that use insect herbivores to control invasive plant species. We argue that any release should be done in randomized release and non-release sites and should be followed up by well-replicated sampling and experimental protocols that evaluate the degree of success or failure. These follow-up studies should include landscape scale monitoring across relevant habitat gradients of (1) the abundance of the biocontrol agent, (2) the impact of the biocontrol agent on the target plant species, (3) the potential for non-target effects, and (4) the response of native species and communities to a reduction in the invasive species. We also argue that (5) experimental reductions of the biocontrol agent are required to eliminate the chance that the putative impact of the biocontrol agent is not confounded with other causes. Finally, we describe six scenarios, informed largely by a community ecology perspective, in which a biocontrol agent may decrease the abundance or vigor of the target plant species but not lead to successful control where native communities re-establish. We classify these failure scenarios as either direct or indirect effects of the invasive plant species: Native Source Limitation, Static Competitive Hierarchies, Novel Weapons, Trophic Shifts, Invasive Engineering and Associated Invasives. Overall, we argue that well replicated and landscape-scale post release monitoring programs are required not only to evaluate critically the degree of success and failure of biocontrol programs worldwide but also to provide insights into improving future biocontrol efforts. Handling Editor: Heikki Hokkanen.  相似文献   

3.
We qualitatively reviewed the biocontrol literature in two major journals, Biological Control and Environmental Entomology, over the past 10 years by scoring 878 studies into 11 biocontrol-oriented questions. Quantitative meta-analyses were then used on data from 145 studies to examine the effects of different types of biocontrol agents (parasitoids, predators, and pathogens) on several attributes of weed and pest populations. Results for our qualitative review showed that most biocontrol studies were focused on lepidopteran pests, and that parasitoids were the most common biocontrol agents used. Our quantitative review showed that, for weeds, biocontrol agents significantly reduced weed biomass (−82.0%), flower (−98.9%), and seed production (−89.4%). For pests, our quantitative review showed that biocontrol agents significantly reduced pest abundance by 130% compared to control groups, increased parasitism (+139.0%) and increased overall pest mortality (+159.0%) compared to targets not exposed to biocontrol agents. Effects on pest mortality tended to be stronger for parasitoids than predators, although reductions caused in pest abundance were much stronger when predators were used as biocontrol agents. Addition of two or more biocontrol agents increased mortality by 12.97% and decreased pest abundance by 27.17% compared to single releases. Separate sets of meta-analyses demonstrated that the negative impacts of biocontrol on non-target species were much smaller than those for target species, although adverse effects of biocontrol on non-target organisms are based on small sample sizes and should be interpreted with caution. Our results also showed that biocontrol efficacy tended to be higher when agents were generalists than when they were specialists. Large fail–safe numbers found for most of the estimated effects indicate the robustness of the results found for the efficacy of biological control programs.  相似文献   

4.
Ecology of forest insect invasions   总被引:1,自引:0,他引:1  
Forests in virtually all regions of the world are being affected by invasions of non-native insects. We conducted an in-depth review of the traits of successful invasive forest insects and the ecological processes involved in insect invasions across the universal invasion phases (transport and arrival, establishment, spread and impacts). Most forest insect invasions are accidental consequences of international trade. The dominant invasion ‘pathways’ are live plant imports, shipment of solid wood packaging material, “hitchhiking” on inanimate objects, and intentional introductions of biological control agents. Invading insects exhibit a variety of life histories and include herbivores, detritivores, predators and parasitoids. Herbivores are considered the most damaging and include wood-borers, sap-feeders, foliage-feeders and seed eaters. Most non-native herbivorous forest insects apparently cause little noticeable damage but some species have profoundly altered the composition and ecological functioning of forests. In some cases, non-native herbivorous insects have virtually eliminated their hosts, resulting in major changes in forest composition and ecosystem processes. Invasive predators (e.g., wasps and ants) can have major effects on forest communities. Some parasitoids have caused the decline of native hosts. Key ecological factors during the successive invasion phases are illustrated. Escape from natural enemies explains some of the extreme impacts of forest herbivores but in other cases, severe impacts result from a lack of host defenses due to a lack of evolutionary exposure. Many aspects of forest insect invasions remain poorly understood including indirect impacts via apparent competition and facilitation of other invaders, which are often cryptic and not well studied.  相似文献   

5.
Two venerable hypotheses, widely cited as explanations for either the success or failure of introduced species in recipient communities, are the natural enemies hypothesis and the biotic resistance hypothesis. The natural enemies hypothesis posits that introduced organisms spread rapidly because they are liberated from their co‐evolved predators, pathogens and herbivores. The biotic resistance hypothesis asserts that introduced species often fail to invade communities because strong biotic interactions with native species hinder their establishment and spread. We reviewed the evidence for both of these hypotheses as they relate to the importance of non‐domesticated herbivores in affecting the success or failure of plant invasion.
To evaluate the natural enemies hypothesis, one must determine how commonly native herbivores have population‐level impacts on native plants. If native herbivores seldom limit native plant abundance, then there is little reason to think that introduced plants benefit from escape from these enemies. Studies of native herbivore‐native plant interactions reveal that plant life‐history greatly mediates the strength with which specialist herbivores suppress plant abundance. Relatively short‐lived plants that rely on current seed production for regeneration are most vulnerable to herbivory that reduces seed production. As such, these plants may gain the greatest advantage from escaping their specialist enemies in recipient communities. In contrast, native plants that are long lived or that possess long‐lived seedbanks may not be kept “in check” by native herbivores. For these species, escape from native enemies may have little to do with their success as exotics; they are abundant both where they are native and introduced.
Evidence for native herbivores providing biotic resistance to invasion by exotics is conflicting. Our review reveals that: 1) introduced plants can attract a diverse assemblage of native herbivores and that 2) native herbivores can reduce introduced plant growth, seed set and survival. However, the generality of these impacts is unclear, and evidence that herbivory actually limits or reduces introduced plant spread is scarce. The degree to which native herbivores provide biotic resistance to either exotic plant establishment or spread may be greatly determined by their functional and numerical responses to exotic plants, which we know little about. Generalist herbivores, through their direct effects on seed dispersal and their indirect effects in altering the outcome of native–non‐native plant competitive interactions, may have more of a facilitative than negative effect on exotic plant abundance.  相似文献   

6.
张黎华  冯玉龙 《生态学报》2007,27(2):802-809
随着生物入侵所引起的生态及经济问题日益严重,对有害入侵生物的防治问题也备受人们关注。生物防治因具有持续、高效、安全等优点,已成为防治有害入侵生物的重要方法。传统生防是防治有害入侵杂草的一种重要方法。在简单介绍生物防治的基础上,重点阐述了传统生物防治的理论基础——天敌逃逸假说,生防因子对外来人侵种的影响及其对本地非目标种的直接和间接效应,并针对这些问题,对我国开展生物防治工作提出几点建议。  相似文献   

7.
The effects of long-term nitrogen loading on grassland insect communities   总被引:14,自引:0,他引:14  
Just as long-term nitrogen loading of grasslands decreases plant species richness and increases plant biomass, we have found that nitrogen loading decreases insect species richness and increases insect abundances. We sampled 54 plots that had been maintained at various rates of nitrogen addition for 14 years. Total insect species richness and effective insect diversity, as well as herbivore and predator species richness, were significantly, negatively related to the rate of nitrogen addition. However, there was variation in trophic responses to nitrogen. Detritivore species richness increased as nitrogen addition increased, and parasitoids showed no response. Insect abundances, measured as the number of insects and insect biovolume (an estimate of biomass), were significantly, positively related to the rate of nitrogen addition, as were the abundances of herbivores and detritivores. Parasitoid abundance was negatively related to the rate of nitrogen addition. Changes in the insect community were correlated with changes in the plant community. As rates of nitrogen addition increased, plant species richness decreased, plant productivity and plant tissue nitrogen increased, and plant composition shifted from C4 to C3 grass species. Along this gradient, total insect species richness and effective insect diversity were most strongly, positively correlated with plant species richness. Insect biovolume was negatively correlated with plant species richness. Responses of individual herbivores varied along the nitrogen gradient, but numbers of 13 of the 18 most abundant herbivores were positively correlated with their host plant biomass. Although insect communities did not respond as strongly as plant communities, insect species richness, abundance, and composition were impacted by nitrogen addition. This study demonstrates that long-term nitrogen loading affects the entire food chain, simplifying both plant and insect communities. Received: 18 May 1999 / Accepted: 5 January 2000  相似文献   

8.
《Biological Control》2006,36(3):240-246
Early research leading to the successful biological control of invasive species such as Opuntia spp., and Hypericum perforatum set examples and provided data useful for research programs that would follow. However, this early work failed to become established as a source of applicable principles for later workers in weed biocontrol. Recently, retrospective and parallel studies have been suggested as a means to reengage with earlier work to derive useful ideas and data to enhance future programs in weed biocontrol. Parallel studies by workers in plant community ecology on the nature of feedback elicited by plant species in their invaded and native range have shown the importance of soil microbial communities in effecting feedback. Retrospective reexamination of previous studies would likely provide clues to other insect–plant pathogen interactions in addition to those described by the author and others. The effects of invasive species in profoundly altering soil microbial communities point to the need for further studies on key microbial species contributing to or driving the impact of biocontrol. These collective data suggest that the desired goal of selecting for and utilizing stronger biocontrol agents to reduce nontarget effects and to increase the impact of biological control programs would be best served by prerelease studies that assess the propensity of a candidate agent for direct or indirect interaction with other agents. This could be assessed through the use of survival analysis. Overall, parallel empirical and retrospective studies should be a necessary part of how biological control is practiced.  相似文献   

9.
From regional to global scales, anthropogenic environmental change is causing biodiversity loss and reducing ecosystem functionality. Previous studies have investigated the relationship between plant diversity and functional insect communities in temperate and also in tropical grasslands and forests. However, few studies have explored these dynamics in subtropical forests. Here, cavity-nesting Hymenoptera and associated parasitoids were collected across a controlled tree diversity experiment in subtropical China to test how predatory wasps, bees and parasitoids respond to tree species richness. Abundance and species richness of predatory wasps and parasitoids were positively correlated with tree species richness, while bee abundance and bee species richness were unrelated to tree species richness. Our results indicate that tree species richness increases the abundance and species richness of important communities such as predators and parasitoids. Moreover, the results highlight the importance of subtropical forests in maintaining abundance and species richness of key functional insect groups.  相似文献   

10.
Direct and indirect plant defences are well studied, particularly in the Brassicaceae. Glucosinolates (GS) are secondary plant compounds characteristic in this plant family. They play an important role in defence against herbivores and pathogens. Insect herbivores that are specialists on brassicaceous plant species have evolved adaptations to excrete or detoxify GS. Other insect herbivores may even sequester GS and employ them as defence against their own antagonists, such as predators. Moreover, high levels of GS in the food plants of non-sequestering herbivores can negatively affect the growth and survival of their parasitoids. In addition to allelochemicals, plants produce volatile chemicals when damaged by herbivores. These herbivore induced plant volatiles (HIPV) have been demonstrated to play an important role in foraging behaviour of insect parasitoids. In addition, biosynthetic pathways involved in the production of HIPV are being unraveled using the model plant Arabidopsis thialiana. However, the majority of studies investigating the attractiveness of HIPV to parasitoids are based on experiments mainly using crop plant species in which defence traits may have changed through artificial selection. Field studies with both cultivated and wild crucifers, the latter in which defence traits are intact, are necessary to reveal the relative importance of direct and indirect plant defence strategies on parasitoid and plant fitness. Future research should also consider the potential conflict between direct and indirect plant defences when studying the evolution of plant defences against insect herbivory.  相似文献   

11.
From regional to global scales, anthropogenic environmental change is causing biodiversity loss and reducing ecosystem functionality. Previous studies have investigated the relationship between plant diversity and functional insect communities in temperate and also in tropical grasslands and forests. However, few studies have explored these dynamics in subtropical forests. Here, cavity-nesting Hymenoptera and associated parasitoids were collected across a controlled tree diversity experiment in subtropical China to test how predatory wasps, bees and parasitoids respond to tree species richness. Abundance and species richness of predatory wasps and parasitoids were positively correlated with tree species richness, while bee abundance and bee species richness were unrelated to tree species richness. Our results indicate that tree species richness increases the abundance and species richness of important communities such as predators and parasitoids. Moreover, the results highlight the importance of subtropical forests in maintaining abundance and species richness of key functional insect groups.  相似文献   

12.
After biocontrol: Assessing indirect effects of insect releases   总被引:7,自引:2,他引:5  
Development of biological control agents for weeds has been motivated by the need to reduce the abundance and distribution of a pest plant where chemical and mechanical control were not cost effective. Primary objectives have been direct reduction in abundance of the target and, secondarily, the increase of desirable species. Recently, wildland weeds have become a focus of biological control projects. Here, desired outcomes include both reduction of the target and indirect effects of increased diversity and abundance of native species and restoration of ecosystem services. However, goals and benefits of biocontrol programs are not always well-articulated and direct and indirect impacts are not easily predicted. We evaluated the extent to which several successful biological control projects for weeds of rangelands and waterways measured indirect impacts on invaded ecosystems. We also examined biocontrol of a wildland pest tree for which the principal objective is restoration of ecosystem services. We found few quantitative assessments of the impacts of pest plant reduction on community composition or ecosystem processes. All examples documented variation in the impacts of agent(s) across the invasive range of the target plant as well as variation in impacts on the invaded ecosystem. However, without appropriate quantitative information, we cannot evaluate site characteristics that may influence vegetation responses. Most successful weed management programs integrated the use of biocontrol agents with other weed management strategies, especially modifications of disturbance and competing vegetation. Discussion and evaluation of responses of nontarget species would improve our understanding of the context-specificity of outcomes.  相似文献   

13.
Many plants employ indirect defenses against herbivores; often plants provide a shelter or nutritional resource to predators, increasing predator abundance, and lessening herbivory to the plant. Often, predators on the same plant represent different life stages and different species. In these situations intraguild predation (IGP) may occur and may decrease the efficacy of that defense. Recently, several sticky plants have been found to increase indirect defense by provisioning predatory insects with entrapped insects (hereafter: carrion). We conducted observational studies and feeding trials with herbivores and predators on two sticky, insect‐entrapping asters, Hemizonia congesta and Madia elegans, to construct food webs for these species and determine the prevalence of IGP in these carrion‐provisioning systems. In both systems, intraguild predation was the most common interaction observed. To determine whether IGP was driven by resource abundance, whether it reduced efficacy of this indirect defense and whether stickiness or predator attraction was induced by damage, we performed field manipulations on H. congesta. Carrion supplementation led to an increase in predator abundance and IGP. IGP was asymmetric within the predator guild: assassin bugs and spiders preyed on small stilt bugs but not vice versa. Despite increased IGP, carrion provisions decreased the abundance of the two most common herbivores (a weevil and a mealybug). Overall seed set was driven by plant size, but number of seeds produced per fruit significantly increased with increasing carrion, likely because of the reduction in the density of a seed‐feeding weevil. Observationally and experimentally, we found that carrion‐mediated indirect defense of tarweeds led to much intraguild predation, though predators effectively reduced herbivore abundance despite the increase in IGP.  相似文献   

14.
Biological Control not on Target   总被引:1,自引:2,他引:1  
Non-target effects of exotic biological control agents, parasitoids and predators, released worldwide to control insect pests, are becoming more apparent. This paper summarizes previously recorded information on the diet breadth of natural enemies released to control insect pests worldwide. It also summarizes the diet breadth of native parasitic hymenoptera in North America to determine whether the diet breadths of native and exotic parasitoids differ. Of released biocontrol agents, 48% were recorded as generalists (attacking more than one genus of host) and another 29.2% attacked more than one species in a genus. Only 22.5% were recorded as specialists on the target pests. This suggests that many natural enemies released in biocontrol programs against insect pests have broad diets and that non-target effects are likely. Data from native hymenoptera in North America also show that many species attack multiple host genera and species, with an average of 5.8 genera and 7.3 species attacked, indicating broad agreement with data from biological control releases.  相似文献   

15.
There is increasing concern over the potential impact of anthropogenic factors (e.g. increasing nutrient inputs, global climate change) on the rate of loss of diversity in ecosystems. Such losses may affect ecosystem processes. In addition, a change in diversity of one group of organisms may influence the diversity of species of the next trophic level. We examined the extent to which plant species richness influences that of insect herbivores in two systems: a long‐term field experiment on heather moorland and a model community in the Ecotron controlled environment facility. We examined the response of these two plant communities to environmental change, specifically increased levels of nutrients, grazing and atmospheric CO2. We measured the indirect effects of changes in these factors on insect herbivores, both above‐ and below‐ground. In the moorland system, grazing was the largest influence on plant community structure. The community was dominated by one species, Calluna vulgaris, and loss of cover under heavy grazing allowed competing species to invade. However, grazing regime was not a major influence on the species richness of the insect herbivore community. Site was more important: there were a greater number of Hemiptera species on sites with more mineral soils than on peat sites, possibly because a greater variety of grass and herb species was present on the former sites. In the Ecotron, below‐ground factors were also important drivers of community change: elevated CO2 increased carbon availability in the soil and there were simultaneous changes in the community composition of soil biota. Above‐ground, some plant species increased in abundance and others decreased, leading to interaction‐specific effects on the insect herbivores. In two very different studies of the effects of environmental change on the interactions between plants and their herbivores, several similar conclusions can be drawn: (1) effects are likely to be site‐ and interaction‐specific; (2) outcomes are likely to be strongly dependent on the initial state and the dominant species of the plant community; and (3) indirect effects, often mediated by below‐ground factors, may have a bigger influence on insect‐plant interactions than more direct effects of above‐ground factors.  相似文献   

16.
Hokkanen & Pimentel (1984) proposed a novel approach for the selection of biocontrol agents. They advocated the selection of agents from a relative of the weed plant rather than from the target weed species itself. The new relationship that such agents would have with the weed would be characterised by a relative lack of homeostasis compared with the old herbivore-plant associations traditionally used in weed biocontrol, and would consequently be more effective. There are few examples to support these contentions because of the traditional use of old herbivore-plant associations in weed biocontrol. In the present study, herbivore-plant associations in agricultural situations, which are analogous to agent-weed associations, are examined to assess the potential of new associations for weed biocontrol. The herbivores on 14 introduced crop plants which have salient similarities to the major weeds in the south-western Cape were surveyed: (a) 68% of the 188 insect and mite herbivores are indigenous species in new associations with these host plants, and (b) of the five most damaging pests on each of 13 of the crop plants, 53% are in new associations with the plants. Of the 40 most important agricultural pests in South Africa, 58% are in new associations, confirming these results. About 50% of the insect and mite herbivores in new associations with their host plants are oligophagous, indicating that new associations are not necessarily characterised by polyphagy and hence unsafe for use in weed biocontrol. We conclude that new associations between herbivore species and host plants have strong potential in weed biocontrol because (a) their frequency in agriculture indicates that they can easily be established in weed biocontrol situations, (b) they are as damaging as old associations and (c) they are not necessarily unsafe as regards host specificity. We therefore advocate the use of both the classical approach and that of Hokkanen & Pimentel (1984). Our support for Hokkanen & Pimentel (1984) is, however, based on evidence and rationale clearly different to theirs, and we provide novel guidelines, which can be routinely and practically applied in the selection of agents for weed biocontrol.  相似文献   

17.
The global ecological impacts of introduced and exotic species can be dramatic, leading to losses in biodiversity and ecosystem “meltdown”, however, the evolutionary impacts of introduced species are much less understood. Further, very few studies have examined whether mammalian herbivores can act as agents of natural selection for plant traits. We examined the hypothesis that variation in aspen phytochemistry resulted in selective herbivory by Cervus elaphus (elk), an introduced mammalian herbivore. With the experimental removal of a large elk exclosure, elk selectively eliminated 60% of an aspen population previously protected from herbivory resulting in a dramatic shift in the phytochemical composition of the aspen forest. Selection gradients (β) varied from 0.52 to 0.66, well above average relative to other studies of selection. These results indicate that introduced herbivores can have rapid evolutionary consequences even on long lived native species. Because there are fundamental links between phytochemistry, biodiversity and ecosystem processes, the effects of an introduced herbivore are likely to have cascading impacts on the services ecosystems provide.  相似文献   

18.
During secondary succession on abandoned agricultural fields the diversity and abundance of insect communities often increases, whereas the performance and nutritional quality of early successional plants often declines. As the diversity and abundance of insects on a single plant are determined by characteristics of the environment as well as of the host plant, it is difficult to predict how insects associated with a single plant species will change during succession. We examined how plant characteristics of the early successional plant species ragwort (Jacobaea vulgaris), and the herbivores and parasitoids associated with these plants change during secondary succession. In ten grasslands that differed in time since abandonment (3–26 years), we measured the size and primary and secondary chemistry of individual ragwort plants. For each plant we also recorded the presence of herbivores in flowers, leaves and stems, and reared parasitoids from these plant parts. Ragwort plants were significantly larger but had lower nitrogen concentrations in recently abandoned sites than in older sites. Pyrrolizidine alkaloid (PA) composition varied among plants within sites but also differed significantly among sites. However, there was no relationship between the age of a site and PA composition. Even though plant size decreased with time since abandonment, the abundance of stem-boring insects and parasitoids emerging from stems significantly increased with site age. The proportion of plants with flower and leaf herbivory and the number of parasitoids emerging from flowers and leaves was not related to site age. Parasitoid diversity significantly increased with site age. The results of our study show that ragwort and insect characteristics both change during secondary succession, but that insect herbivore and parasitoid abundances are not directly related to plant size or nutritional quality.  相似文献   

19.
The gypsy moth is considered one of the most harmful invasive forest insects in North America. It has been suggested that gypsy moth may indirectly impact native caterpillar communities via shared parasitoids. However, the impact of gypsy moth on forest insect food webs in general remains unstudied. Here we assess such potential impacts by surveying forest insect food webs in Ontario, Canada. We systematically collected caterpillars using burlap bands at sites with and without histories of gypsy moth outbreak, and then reared these caterpillars until potential parasitoid emergence. This procedure allowed us to generate quantitative food webs describing caterpillar-parasitoid interactions. We estimated the degree of parasitoid sharing between gypsy moth and native caterpillars. We also statistically modeled the effect of gypsy moth outbreak history and current gypsy moth abundance on standard indices of quantitative food web structure and the diversity of parasitoid communities. Rates of gypsy moth parasitism were very low and gypsy moth shared very few parasitoids with native caterpillars, suggesting limited potential for indirect interactions. We did not detect any significant effects of gypsy moth on either food web structure or parasitoid diversity, and the small amount of parasitoid sharing strongly implies that this lack of significance is not merely due to low statistical power. Our study suggests that gypsy moth has limited impact on native host-parasitoid food webs, at least for species that use burlap bands. Our results emphasize that extrapolations of theoretical and experimental conclusions on the impacts of invasive species should be tested in natural settings.  相似文献   

20.
Karina Boege 《Oikos》2004,107(3):541-548
Induced changes in plant quality are hypothesized to reduce herbivore numbers and subsequent damage to the plant. The resultant decrease in herbivory may be due to direct negative impacts on herbivores, through the reduction in foliage quality as food, or due to indirect effects of plant-induced traits interacting with the third trophic level, increasing predation and parasitism rates on herbivores. The relative importance of induced responses as direct and/or indirect defenses has not been evaluated in natural systems. Moreover, few studies have evaluated the influence of early-season damage on late-season herbivory in natural systems, particularly in the tropics. The presence of induced responses and subsequent impact on folivory as a consequence of early-season damage were evaluated in three plant species ( Croton pseudoniveus , Bursera instabilis and Piper stipulaceum ) in a tropical dry forest in Mexico. A two-factorial experiment was applied to determine if induced responses influenced subsequent herbivory directly, by reducing foliage quality, or indirectly, through their interaction with parasitoids and predatory arthropods. Plants from all three species with reduced early-season damage had higher herbivory rates through the rest of the growing season, compared to plants that were damaged during leaf expansion. Chemical analyses showed that early-season damage induced the production of total phenolics and condensed tannins for C. pseudoniveus and B. instabilis , respectively. The mechanism by which these compounds affected subsequent herbivory was most likely by directly reducing foliage quality as food for herbivores, given that predatory arthropods and parasitoids had no effects on herbivory in this study. I conclude that early-season damage in these three species influenced later-season herbivory through the induction of plant responses that may act to reduce plant quality as food for herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号