首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Salinity is one of the main chemical factors in salt marshes. Studies focused on the analysis of salinity tolerance of salt marsh plants are very important, since they may help to relate their physiological tolerances with distribution limits in the field. Spartina densiflora is a South America cordgrass, which has started its invasion of the European coastline from the southwestern Iberian Peninsula. In this work, short-term responses in adult tussocks of S. densiflora from southwestern Spain are studied over a wide range of salinity in a greenhouse experiment. Our results point out that S. densiflora has a high tolerance to salinity, showing high growth and net photosynthesis rates from 0.5 to 20 ppt. S. densiflora showed at the lowest salinity (0.5 ppt) high levels of photoinhibition, compensated by higher levels of energy transmission between photosystems. Adaptative mechanisms, as those described previously, would allow it to live in fresh water environments. At the highest salinity (40 ppt), S. densiflora showed a high stress level, reflected in significant decreases in growth, net photosynthesis rate and photochemical efficiency of Photosystem II. These responses support S. densiflora invasion patterns in European estuaries, with low expansion rates along the coastline and faster colonization of brackish marshes and river banks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Four species of exotic cordgrass (Spartina sp.) occur in the San Francisco estuary in addition to the California native Spartina foliosa. Our goal was to map the location and extent of all non-native Spartina in the estuary. Hybrids of S. alterniflora and S. foliosa are by far the most numerous exotic and are spreading rapidly. Radiating from sites of deliberate introduction, S. alterniflora and hybrids now cover ca. 190 ha, mainly in the South and Central Bay. Estimates of rate of aerial increase range from a constant value to an accelerating rate of increase. This could be due to the proliferation of hybrid clones capable of rapid expansion and having superior seed set and siring abilities. The total coverage of 195 ha by hybrids and other exotic cordgrass species is slightly less than 1% of the Bay's tidal mudflats and marshes. Spartina anglica has not spread beyond its original 1970s introduction site. Spartina densiflora has spread to cover over 5 ha at 3 sites in the Central Bay. Spartina patens has expanded from 2 plants in 1970 to 42 plants at one site in Suisun Bay. Spartina seed floats on the tide, giving it the potential to export this invasion throughout the San Francisco estuary, and to estuaries outside of the Golden Gate. We found isolated plants of S. alterniflora and S. densiflora in outer coast estuaries north of the Bay suggesting the likelihood for the San Francisco Bay populations to found others on the Pacific coast.  相似文献   

3.
The South American cordgrass Spartina densiflora is invading European salt marshes getting into contact with the indigenous and endangered low-marsh dominant, Spartina maritima. This work describes the evolution of the plant zonation during 7 years in a marsh of S. maritima invaded by S. densiflora. S. maritima appeared throughout the whole intertidal gradient from 1.72 to 3.33 m over Spanish Hydrographic Zero (SHZ), showing its higher biomasses and shoot densities at low elevations. In contrast, S. densiflora only invaded upper areas (>+2.59 m SHZ) at the centre of circular tussocks of S. maritima. Above-ground biomass of S. maritima dropped drastically at maximum occupation of space by the alien, and its shoot density and above-ground biomass decreased at S. densiflora zone during the study. The competitive potential of S. densiflora was reflected in high above- and below-ground biomass and shoot densities, accompanied by elevated wrack accumulation and the absence of other marsh plants presented together with S. maritima from areas dominated by S. densiflora. S. densiflora altered the native vegetational zonation pattern through the invasion of the centre of S. maritima tussocks; however, the alien invasion may be limited by the presence of the autochthonous cordgrass at lower elevations. Handling editor: Luis Mauricio Bini  相似文献   

4.
Aim To produce an inventory of south‐west Atlantic saltmarshes (from latitude 31°48′ S to 43°20′ S) using remotely sensed images and field sampling; to quantify their total area; to describe the biogeographical variation of the main habitats characterized by dominant vascular plants, in relation to major environmental factors; to test the hypothesis of predominance of the reversal pattern in plant distribution (sedges and grasses dominate the lower, regularly inundated zones, while the upper zones are occupied by more halophytic species) previously described; and to compare these south‐west Atlantic saltmarshes with others world‐wide. Location South‐western Atlantic saltmarshes Methods Field samples of dominant emergent plant species positioned by the global positioning system (GPS) were obtained from most coastal saltmarshes (14) between southern Brazil and northern Patagonia, Argentina. Landsat satellite images were obtained and coastal saltmarsh habitats were quantified by supervised classification, utilizing points gathered in the field. Results Three main plant species dominated the low and middle intertidal saltmarsh, Spartina alterniflora Loesel., Spartina densiflora Brong. and Sarcocornia perennis (P. Mill.) A.J. Scott. The total area of the studied coastal saltmarshes was 2133 km2, comprising 380 km2 of Sp. alterniflora marsh, 366 km2 of Sp. densiflora marsh, 746 km2 of Sar. perennis marsh and 641 km2 of brackish marsh (dominated by Juncus acutus L., Juncus kraussii Hochst., Scirpus maritimus L., Scirpus americanus Pers. and Phragmites australis (Cav.) Trin.). Cluster analysis showed three habitat types: saltmarshes dominated by (1) Sp. densiflora and brackish species,(2) Sp. alterniflora and Sar. perennis and (3) Sp.densiflora only. The analysis of abiotic variables showed significant differences between groups of habitats and coordinated gradients of the abiotic variables. The south‐west Atlantic coast showed decreasing mean annual rainfall (1200 to 196 mm) and increasing mean tidal amplitude (< 0.5 to > 2.5 m) from latitude 31° to 43°. Main conclusions South‐west Atlantic saltmarshes are globally important by virtue of their total extent. Remote sensing showed that the reversal pattern in plant distribution is not widespread. Indeed, south‐west Atlantic saltmarshes are better characterized by the presence of the halophytic genera Spartina and Sarcocornia. Our results support the interpretation that south‐west Atlantic saltmarshes constitute a class of temperate type (sensu Adam, 1990 ) with transitional characteristics between Australasian–South African saltmarshes and west Atlantic saltmarshes.  相似文献   

5.
Vascular plants in salt marshes strongly influence processes of heavy metal accumulation. Many studies have focused on this issue; however, there is a lack of information regarding the effects of plants on the distribution of certain poorly studied metals, such as Co, Cr, and Ni. The aim of this study was to comparatively evaluate the capability of Spartina densiflora Brongn. and Spartina maritima (Curtis) Fernald, to accumulate Co, Cr, and Ni and influence the sediment composition around their roots, investigating whether the observed behavior can change with different levels of sediment pollution. Concentrations of Co, Cr, and Ni were determined in tissues of S. densiflora and S. maritima and in sediments and rhizosediments from the Odiel and Tinto marshes (SW Spain), one of the estuaries most polluted by heavy metals in the world. Concentrations of Co, Cr, and Ni in the belowground tissues of both Spartina species were higher than those in aboveground tissues in all sites sampled. Both species showed potential for phytostabilization of Co, possibly by promoting the formation of high amounts of Fe-oxides in the rhizosphere, which can act to retain the metal within the sediment around the roots. In addition, both Spartina species were found to accumulate Co in their roots, thereby avoiding the translocation of this metal to photosynthetic tissues. At the Tinto marsh, there were no differences recorded in metal levels between sediments and rhizosediments of both species, a fact that could be explained by the extremely high background levels of metals at this site, which may impair the ability of the plant to alter the chemistry of the sediment in contact with the roots. The potential for the immobilization of a large amount of Co in the soil, exhibited by S. densiflora and S. maritima, indicates that both species could be highly useful in the phytostabilization of Co contaminated environments.  相似文献   

6.
Plant zonation is one of the most conspicuous ecological features of salt marshes worldwide. In this work we used a combination of field transplant and greenhouse experiments to evaluate the importance of interspecific interactions and physical stress in the determination of the major plant zonation patterns in Central Patagonian salt marshes. There, Spartina alterniflora dominates the low marsh, and Sarcocornia perennis the high marsh. We addressed two questions: (i) What prevents Spartina alterniflora from colonizing the Sarcocornia perennis‐dominated high marsh zone? and (ii) What prevents Sarcocornia perennis from colonizing the Spartina alterniflora‐dominated low marsh zone? Our experimental transplants combined with neighbour exclusion treatments showed that the presence of Sarcocornia perennis negatively affects Spartina alterniflora, preventing it from surviving and/or spreading. Complementary field transplant and greenhouse experiments showed that Sarcocornia perennis did not survive the frequent tidal submersion by approximately 1.5 m of turbid seawater in the Spartina alterniflora zone, but its survival was independent of the presence of Spartina neighbours, and of the strong soil anoxia as well. Our results suggest that Spartina alterniflora is excluded by Sarcocornia perennis towards the low marsh, where frequent and prolonged submersion limit the survival of the latter. We provide and discuss key baseline information to facilitate the future design of ecophysiological experiments designed to accurately identify the exact mechanisms acting in every situation.  相似文献   

7.
Hemisphere scale events such as El Niño-Southern Oscillation (ENSO) can alter rainfall regimes worldwide, with important effects on species abundance and distribution. The evidence of ENSO effects on terrestrial communities is, however, restricted to a few ecosystem types. We explored the effects of ENSO episodes on plant/terrestrial-herbivore interactions through changes in the rainfall regime in a southwestern Atlantic salt marsh (Mar Chiquita coastal lagoon, Argentina. 37° 40′S, 57° 23′W). Surveys showed a positive relationship between winter rainfall and the abundance of the wild guinea pig Cavia aperea. The highest salt marsh abundances of C. aperea were associated with rainy periods during El Niño episodes, and the lowest ones were associated with the driest La Niña episodes. Rainfall was negatively associated with marsh sediment salinity, and experiments revealed that increased salinity reduces growth and increases mortality of cordgrass (Spartina densiflora). Salt increase also causes the highest percentage of dry area in S. densiflora leaves and reduced carbon content, and more salt content and secretion in S. densiflora stems. A factorial experiment in which we manipulated C. aperea presence and salinity along the edges of S. densiflora patches showed that plants can asexually invade unvegetated areas when salinity is reduced and C. aperea is excluded. Conversely, S. densiflora edges retracted when salinity was increased or there was C. aperea herbivory. Changes in nutritional quality of S. densiflora could explain the low herbivory of (and lack of impacts from) C. aperea in plots with high salinity. Thus, plant distribution responds directly to climate oscillations through changes in salt stress, and indirectly, through changes in plant-herbivore interactions. Herbivores respond indirectly to climate oscillations through changes in plant food quality, which suggests that top-down effects increase when bottom-up stressors are relaxed. ENSO events have direct and indirect effects on marsh communities that modulate the relative importance of top-down and bottom-up effects and have a considerable effect on the primary productivity of S. densiflora marshes.  相似文献   

8.
Ascomycetous fungi play an important role in the early stages of decomposition of Spartina alterniflora, but their role in the decomposition of other Spartina species has not been investigated. Here we use fingerprint (terminal restriction fragment length polymorphism) and phylogenetic analyses of the 18S to 28S internal transcribed spacer region to compare the composition of the ascomycete fungal communities on early decay blades of Spartina species (Spartina alterniflora, Spartina densiflora, Spartina foliosa, and a hybrid (S. alterniflora × S. foliosa)) collected from three salt marshes in San Francisco Bay and one in Tomales Bay, California, USA. Phaeosphaeria spartinicola was found on all samples collected and was often dominant. Two other ascomycetes, Phaeosphaeria halima and Mycosphaerella sp. strain 2, were also common. These three species are the same ascomycetes previously identified as the dominant fungal decomposers on S. alterniflora on the east coast. Ascomycetes appeared to exhibit varying degrees of host specificity, demonstrated by grouping patterns on phylogenetic trees. Neither the exotic S. alterniflora nor the hybrid supported fungal flora different from that of the native S. foliosa. However, S. densiflora had a significantly different fungal community than the other species, and hosted at least two unique ascomycetes. Significant differences in the fungal decomposer communities were also detected within species (two clones of S. foliosa), but these were minor and may be due to morphological differences among the plants.  相似文献   

9.
We analyzed variations in the life span of the invasive cordgrass Spartina densiflora at low marshes of SW Iberian Peninsula, and identified the abiotic factors limiting the plant in the absence of competition. With these objectives, clump survivorship, flowering, and growth of S. densiflora were studied in two natural populations at different low marsh elevations during more than three years, and at a transplant experiment in comparison with the native Spartina maritima. The life spans of both cordgrasses changed depending on small variations of a few centimeters in elevation. S. maritima, which tolerates better than S. densiflora the stressful abiotic environment of lower marshes, showed a significant lower distribution limit for its perennial habit, with survivorship longer than three years (from 1997 to 2000), than the neophyte (+1.57 m SHZ vs. +2.00 m SHZ). S. densiflora clumps flowered before dying at mostly all elevations, showing low relative growth rates. In contrast, clumps of S. maritima, with non-viable seeds, only flowered when they were three years old at higher elevations in the low marsh. Our results have applications for salt marshes bioengineering projects and to prevent S. densiflora from invading European marshes since our data improve the knowledge of its colonization mechanisms through salt marsh zonation and so identify those portions of restored and native marshes most susceptible to invasion due to the establishment of perennial populations.  相似文献   

10.
Hybridization is a relevant evolutionary mechanism linked to the invasiveness of plant species, but little is known about its effect on enzymatic activities in response to stress. We analyzed the effects of salinity on key mechanistic traits of phosphoenolpyruvate carboxylase (PEPC) enzyme for two hybrid taxa derived from native Spartina maritima (Curtis) Fernald and invasive Spartina densiflora Brongn. in comparison with their parental species. Parental species showed contrasted strategies at the PEPC level to cope with salinity. Spartina maritima showed its physiological optimum at 10 to 40 ppt salinity, with high PEPC activity (per unit leaf soluble protein), in contrast to the lower salinity optimum of 0.5 and 10 ppt for S. densiflora, where highest levels of PEPC apparent specific activity coincided with high light-induced activation of PEPC. Both hybrids showed constant PEPC apparent specific activity from fresh water to hypersalinity and exhibited higher net photosynthesis rates in fresh water than their parents. Spartina maritima × densiflora presented three transgressive PEPC-related traits, being the only taxon able to increase its PEPC activation in darkness at high salinity. Spartina densiflora × maritima showed most PEPC-related traits intermediate between its parents. Inheritance types operating differently in reciprocal hybrids determine key functional traits conditioning their ecological performance.  相似文献   

11.
  • Pollution of coasts by toxic metals and metalloids is a worldwide problem for which phytoremediation using halophytes and associated microbiomes is becoming relevant. Metal(loid) excess is a constraint for plant establishment and development, and plant growth promoting rhizobacteria (PGPR) mitigate plant stress under these conditions. However, mechanisms underlying this effect remain elusive. The effect of toxic metal(loid)s on activity and gene expression of ROS‐scavenging enzymes in roots of the halophyte Spartina densiflora grown on real polluted sediments in a greenhouse experiment was investigated.
  • Sediments of the metal‐polluted joint estuary of Tinto and Odiel rivers and control, unpollutred samples from the Piedras estuary were collected and submitted to ICP‐OES. Seeds of S. densiflora were collected from the polluted Odiel marshes and grown in polluted and unpolluted sediments. Rhizophere biofilm‐forming bacteria were selected based on metal tolerance and inoculated to S. densiflora and grown for 4 months. Fresh or frozen harvested plants were used for enzyme assays and gene expression studies, respectively.
  • Metal excess induced SOD (five‐fold increase), whereas CAT and ascorbate peroxidase displayed minor induction (twofold). A twofold increase of TBARs indicated membrane damage. Our results showed that metal‐resistant PGPR (P. agglomerans RSO6 and RSO7 and B. aryabhattai RSO25) contributed to alleviate metal stress, as deduced from lower levels of all antioxidant enzymes to levels below those of non‐exposed plants. The oxidative stress index (OSI) decreased between 50 and 75% upon inoculation.
  • The results also evidenced the important role of PAL, involved in secondary metabolism and/or lignin synthesis, as a pathway for metal stress management in this halophyte upon inoculation with appropriate PGPR, since the different inoculation treatments enhanced PAL expression between 3.75‐ and five‐fold. Our data confirm, at the molecular level, the role of PGPR in alleviating metal stress in S. densiflora and evidence the difficulty of working with halophytes for which little genetic information is available.
  相似文献   

12.
In Patagonian rocky salt marshes, the presence of the austral cordgrass Spartina densiflora provide habitat for diverse faunal assemblages. Two different mechanisms may influence the distribution and abundance patterns of these associated organisms: those generated by the biological properties of cordgrasses and those caused or mediated by the physical structure supplied by the plants. The aims of this study were: (1) to determine the effect of cordgrasses on macroinvertebrate assemblages dominating a rocky marsh and (2) to determine how much of this effect is caused by the physical structure supply by the plants. In order to achieve these objectives, we conducted two field manipulative experiments. In the first one, we manipulated the presence of defaunated transplants of cordgrass, and in the second one, we did the same with plastic cordgrass mimics simulating the architecture of Spartina densiflora. In both experiments, sessile and mobile assemblages were separately examined to evaluate whether they respond in the same way or not. Abundance and richness of mobile and sessile organisms were higher in transplant and mimic cordgrass plots compared to the controls, indicating that the presence of cordgrasses, either transplanted or artificial, has a positive effect on sessile and mobile assemblages. Furthermore, we found that the composition of mobile and sessile macroinvertebrates assemblages did not differ between transplants and mimics. Therefore, the physical structure of cordgrass was found to be the major factor influencing macroinvertebrates assemblages in the studied Patagonia rocky salt marshes. Within the period of 1 year, mobile and sessile fauna colonized several times more abundantly transplant and artificial cordgrass than the control unvegetated plots, highlighting the key role of cordgrasses in optimizing the colonization rate of macroinvertebrate communities in this rocky bottom environment. Since Spartina densiflora is invading different regions worldwide, our study may help to predict its potential effect on the invaded communities.  相似文献   

13.
The Japanese brown seaweed Sargassum muticum, recently invaded several shorelines worldwide including the Atlantic coast of Morocco with large well‐established populations. Within the framework of a sustainable strategy to control this invasive seaweed, we report on extraction yield, spectroscopic characterization and rheological properties of alginate, a commercially valuable colloid, from harvested biomass of S. muticum. Extraction yield was about 25.6% on dry weight basis. Infrared spectroscopy analysis shows that the obtained Fourier transform infrared spectra of the extracted biopolymer exhibit strong similarities with that of the commercial alginate. Furthermore, Proton nuclear magnetic resonance spectroscopy revealed that S. muticum alginate has almost equal amounts of β‐D‐mannuronic acid (M; 49%) and α‐L‐guluronic acid (G; 51%) with an M/G ratio of 1.04 and a high content of heteropolymeric MG GM diads suggesting a sequence distribution of an alternated polymer type. Rheological measurements were performed at different sodium alginate concentrations, temperatures and shear rates. The hydrocolloid exhibited pseudoplastic behavior and showed shear thinning, particularly at high solution concentration and low temperature which is consistent with the rheological behavior reported for commercial alginates. Considering the abundance of S. muticum in the Northwestern Atlantic coast of Morocco and the quality of the extracted hydrogel, this invasive species could be considered as a potential source of alginates.  相似文献   

14.
Spartina alterniflora, a perennial grass native to the North American Atlantic coast, was introduced during the 19th century in western Europe (Southern England and western France) where it hybridized with the native Spartina maritima. In England, the sterile hybrid S. × townsendii gave rise by chromosome doubling to the highly fertile allopolyploid Spartina anglica, which has now invaded many salt marshes and estuaries in western Europe, and has been introduced in several continents. In South-West France, another sterile hybrid was discovered in 1892 in the Bidassoa Estuary, and named Spartina × neyrautii. According to their morphology, some authors suggested that S. × neyrautii and S. × townsendii result from reciprocal crosses. During the 20th century, the hybridization site was severely disturbed, and surviving of S. × neyrautii was questioned. In this paper, various Spartina populations are investigated in the Basque region (France and Spain), and compared to the hybrid taxa formed in England (S. × townsendii and S. anglica). The samples were analyzed using molecular fingerprinting (RAPD and ISSR) and Chloroplast DNA sequence (trnL-trnT spacer, trnL intron and trnL-trnF spacer). In the Bidassoa estuary, a hybrid isolated clone has been found, that displays additive species-specific nuclear markers of S. maritima and S. alterniflora, and that is subsequently considered as a surviving clone of S. × neyrautii. The molecular analyses indicate that S. × neyrautii and S. × townsendii share the same maternal (S. alterniflora), and paternal (S. maritima) parental species, but also that the two independent hybridization events have involved different parental (nuclear) genotypes in England and in South-West France. Received July 12, 2002; accepted October 4, 2002 Published online: March 20, 2003  相似文献   

15.
16.
The distribution and abundance of Enchytraeidae and Tubificidae in and around Spartina alterniflora plants in a tidal salt marsh on Sapelo Island, Georgia, USA were studied using two different sampling techniques: wet funnel extraction and stem dissection. At least 80% of all worms inhabited leaf sheaths at the bases of S. alterniflora plants, and densities were low in sediment, root and surface debris samples. Oligochaete densities were dependent on the position within the marsh, the height on stems and the stage of sheath decay. Six predominant species were identified and included Marionina appendiculata, Marionina spartinae, Marionina waltersi, Marionina paludis, and Monopylephorus parvus. Individual species were distributed differently on stems and enchytraeids were more common than tubificids on standing-dead and further up S. alterniflora stems. Estimates of oligochaete densities in salt marsh habitats are increased dramatically when the numbers of worms on stems are considered. Possible advantages of the stem microhabitat are discussed in relation to the biology and ecology of oligochaetes.  相似文献   

17.
Question: Are there hot spots of algal mat deposition in space and time at the marsh scale and, if so, how does this affect the coexistence of a dominant (Spartina anglica) and gap dependent (Salicornia europaea) species? Location: The Rattekaai salt marsh in the Scheldt estuary in the southwestern Netherlands (NW Europe). Methods: Mat cover and the abundance of the gap dependent species Salicornia europaea were monitored at the scale of a marsh. The effects of mat cover on the vegetation structure were studied by applying three mat removal treatments over three growing seasons. Results: The low marsh border was found to be a hot spot of algal mat deposition during the growing season, which had a correlated spatial pattern between two successive years at a 20 m X 20 m scale. The combination of duration, timing and repetition of mat cover determined growth inhibition of the competitive dominant Spartina anglica, and thereby the abundance of subordinates such as Salicornia europaea. Mat cover reduced the storage of carbon reserves in Spartina and our results imply that repetition of non‐lethal mat cover can lead to ‘gap creation’. Gaps gave only temporary habitat to less dominant species since Spartina quickly re‐invaded them. The gap dependent annual Salicornia was most abundant at intermediate levels of disturbance measured as a function of both space and time. Conclusions In addition to disturbance level, the spatial and temporal distribution of disturbance are important in creating and maintaining habitat for gap dependent species. Relatively small disturbances will have a large effect on diversity if the spatial and temporal distribution of the disturbances leads to ‘disturbance hot spots’.  相似文献   

18.
New data of aboveground biomass and production of four angiosperms over a 12 month period for the Cantabrian Sea salt marshes (Bay of Biscay, N. Spain) are presented. Based on harvest methods, maximum aboveground total biomass values for Spartina maritima (Curtis) Fernald, Spartina alterniflora Loisel, Salicornia ramosissima J. Woods and Halimione portulacoides (L.) Aellen were 628, 1109, 480 and 1267 gm-2, respectively. We conclude that although a slight latitudinal gradient in biomass is revealed in the data compiled with reference to some of the species studied, more work is neccesary in order to assess the potential productivity of these ecosystems on the coasts of Europe and/or to make comparisons with salt marshes of the American coasts. Annual net aerial primary production estimates using Smalley's method were: 296, 1160, 486 and 952 gm-2yr-1, for Spartina maritima, Spartina alterniflora, Salicornia ramosissima and Halimione portulacoides, respectively. These results together with turnover rate estimates point to the lack of vigour of the native S. maritima, while the exotic S. alterniflora, which seems to be spreading along the Cantabrian estuaries, behaves like a veritable pionner throughout the low marshes in this region.  相似文献   

19.
Balanus glandula, an east Pacific acorn barnacle from rocky shores, was introduced to Mar del Plata, Argentina more than 40 years ago and has spread over 17 latitudinal degrees southward. Here we report the first record of this species living in a soft-bottom environment colonizing the salt marsh plant species Limonium brasiliense, Spartina densiflora, S. alterniflora and Sarcocornia perennis. In addition, we describe the size frequency distribution, density and spatial distribution of the barnacles colonizing the different plant species. The size frequency distribution of Balanus showed a bimodal pattern in all plants. Barnacles were mostly large in S. densiflora, but small in S. alterniflora, with more balanced distributions of small and large barnacles on S. perennis and L. brasiliense. The highest density of barnacles was observed on S. perennis (x = 35.8 ind/cm2, SD = 40.5) and S. alterniflora (x = 33.8 ind/cm2, SD = 23), while the lowest on L. brasiliense (x = 1.5 ind/cm2, SD = 1.18) and S. densiflora (x = 0.17 ind/cm2, SD = 0.09). More than 90% of the barnacles on any given plant were found living. While barnacles colonized only the first few centimeters above the soil surface level in S. alterniflora and L. brasiliense, they reached their highest point on S. perennis. The finding of a rocky shore species successfully colonizing soft-bottom marshes within an invaded region brings new perspectives to discussions in biological invasion ecology, and raises additional considerations for coastal environmental management.  相似文献   

20.
Spartina altemiflora (smooth cordgrass) has invaded Willapa Bay, Washington, covering bare mud flats and seagrass beds. At current expansion rates it threatens to occupy most of the intertidal habitat in the bay within 40 years. Although a major mitigation effort is underway, nothing is known about the genetic structure of the Willapa Bay S. altemiflora population or the underlying causes for the dramatic increase in seed set that has occurred in the last 15 years. Random amplified polymorphic DNA (RAPD) analysis was assessed as a method of DNA fingerprinting to analyse the genetic history and current structure of the Willapa population. The results suggest that all S. alterniflora clones in Willapa Bay are descended from a single genet. Given the limited genetic variability expected in a clonally founded population, we discuss the utility of RAPDs as genetic markers to explore the large morphological and reproductive differences reported among Willapa clones. Cluster analysis of RAPD fragments was used to show relatedness among S. alteniflora genets and may be helpful in locating the most prolific clones for mitigation efforts. Overall, RAPDs show great potential in genetic analysis of S. altemiflora, particularly in invasive populations where isozyme variability is low or nonexistent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号