首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
可变剪接的生物信息数据分析综述   总被引:1,自引:0,他引:1  
前体mRNA的可变剪接是扩大真核生物蛋白质组多样性的重要基因调控机制。可变剪接的错误调节可以引起多种人类疾病。由于高通量技术的发展,生物信息学成为可变剪接研究的主要手段。本文总结了可变剪接在生物信息学领域的研究方法,同时也分析并预测了可变剪接的发展方向。  相似文献   

2.
Alternative splicing is a widespread means of increasing protein diversity and regulating gene expression in eukaryotes. Much progress has been made in understanding the proteins involved in regulating alternative splicing, the sequences they bind to, and how these interactions lead to changes in splicing patterns. However, several recent studies have identified other players involved in regulating alternative splicing. A major theme emerging from these studies is that RNA secondary structures play an under appreciated role in the regulation of alternative splicing. This review provides an overview of the basic aspects of splicing regulation and highlights recent progress in understanding the role of RNA secondary structure in this process.  相似文献   

3.
4.
5.
6.
7.
Alternative splicing is a complex and regulated process, which results in mRNA with different coding capacities from a single gene. Extend and types of alternative splicing vary greatly among eukaryotes. In this review, I focus on alternative splicing in ascomycetes, which in general have significant lower extend of alternative splicing than mammals. Yeast-like species have low numbers of introns and consequently alternative splicing is lower compared to filamentous fungi. Several examples from single studies as well as from genomic scale analysis are presented, including a survey of alternative splicing in Neurospora crassa. Another focus is regulation by riboswitch RNA and alternative splicing in a heterologous system, along with putative protein factors involved in regulation.  相似文献   

8.
9.
大多数真核基因能够发生可变剪接,其调控对于生理和病理状态下细胞功能的实现至关重要,而异常可变剪接则可导致多种疾病。虽然已知可变剪接能够在转录后水平调节基因表达,然而目前仍不清楚特定的可变剪接模式是如何被调控的。越来越多的研究发现细胞信号和外界环境刺激能够调控靶基因的剪接模式,并且已发现一些与可变剪接调控有关的信号转导通路,而后者能够通过修饰剪接因子进而改变剪接因子的亚细胞定位或者活性,从而实现对靶基因可变剪接模式的调控。由细胞信号转导通路所构成的网络能够灵活多样地调控基因剪接,一条信号通路可调控多个基因剪接,而多条信号通路也可调控同一基因剪接,对于理解信号转导过程的分子机制具有重要意义。  相似文献   

10.
Celotto AM  Graveley BR 《Genetics》2001,159(2):599-608
The Drosophila melanogaster Down syndrome cell adhesion molecule (Dscam) gene encodes an axon guidance receptor that can express 38,016 different mRNAs by virtue of alternative splicing. The Dscam gene contains 95 alternative exons that are organized into four clusters of 12, 48, 33, and 2 exons each. Although numerous Dscam mRNA isoforms can be synthesized, it remains to be determined whether different Dscam isoforms are synthesized at different times in development or in different tissues. We have investigated the alternative splicing of the Dscam exon 4 cluster, which contains 12 mutually exclusive alternative exons, and found that Dscam exon 4 alternative splicing is developmentally regulated. The most highly regulated exon, 4.2, is infrequently used in early embryos but is the predominant exon 4 variant used in adults. Moreover, the developmental regulation of exon 4.2 alternative splicing is conserved in D. yakuba. In addition, different adult tissues express distinct collections of Dscam mRNA isoforms. Given the role of Dscam in neural development, these results suggest that the regulation of alternative splicing plays an important role in determining the specificity of neuronal wiring. In addition, this work provides a framework to determine the mechanisms by which complex alternative splicing events are regulated.  相似文献   

11.

Background  

Alternative pre-mRNA splicing is an important gene regulation mechanism for expanding proteomic diversity in higher eukaryotes. Each splicing regulator can potentially influence a large group of alternative exons. Meanwhile, each alternative exon is controlled by multiple splicing regulators. The rapid accumulation of high-throughput data provides us with a unique opportunity to study the complicated alternative splicing regulatory network.  相似文献   

12.
13.
14.
Alternative splicing of messenger RNA precursors is an extraordinary source of protein diversity and the regulation of this process is crucial for diverse cellular functions in both physiological and pathological situations. For many years, several signaling pathways have been implicated in alternative splicing regulation. Recent work has begun to unravel the molecular mechanisms by which extracellular stimuli activate signaling cascades that modulate the activity of the splicing machinery and therefore the splicing pattern of many different target messenger RNA precursors. These experiments are revealing unexpected aspects of the mechanism that control splicing and the consequences of the regulated splicing events. We summarize here the current knowledge about signal-induced alternative splicing regulation of Slo, NR1, CD44, CD45 and fibronectin genes, and also discuss the importance of some of these events in determination of cellular fate. Furthermore, we highlight the relevance of signal-induced changes in phosphorylation state and subcellular distribution of splicing factors as a way of regulating the splicing process. Lastly, we explore new and unexpected findings about regulated splicing in anucleated cells.  相似文献   

15.
16.
Pre-mRNA选择性剪接是真核生物转录组和蛋白质组多样性的主要来源,也是细胞分化、发育等过程中重要的基因表达调控方式。约95%的人类多外显子基因存在RNA选择性剪接|很多人类基因疾病的发生与RNA剪接错误相关。随着共转录现象的发现,RNA选择性剪接调控机制研究也取得了很大进展。本文分别从序列层面和核小体定位、组蛋白修饰、DNA甲基化及非编码RNA等表观遗传层面,系统地阐述了RNA选择性剪接的调控机制。为便于搜索,本文介绍了近10年来RNA选择性剪接相关的数据库。  相似文献   

17.
Luco RF  Allo M  Schor IE  Kornblihtt AR  Misteli T 《Cell》2011,144(1):16-26
Alternative splicing plays critical roles in differentiation, development, and disease and is a major source for protein diversity in higher eukaryotes. Analysis of alternative splicing regulation has traditionally focused on RNA sequence elements and their associated splicing factors, but recent provocative studies point to a key function of chromatin structure and histone modifications in alternative splicing regulation. These insights suggest that epigenetic regulation determines not only what parts of the genome are expressed but also how they are spliced.  相似文献   

18.
Regulation of alternative splicing is controlled by pre-mRNA sequences (cis-elements) and trans-acting protein factors that bind them. The combinatorial interactions of multiple protein factors with the cis-elements surrounding a given alternative splicing event lead to an integrated splicing decision. The mechanism of multifactorial splicing regulation is poorly understood. Using a splicing-sensitive DNA microarray, we assayed 352 Caenorhabditis elegans alternative cassette exons for changes in embryonic splicing patterns between wild-type and 12 different strains carrying mutations in a splicing factor. We identified many alternative splicing events that are regulated by multiple splicing factors. Many splicing factors have the ability to behave as splicing repressors for some alternative cassette exons and as splicing activators for others. Unexpectedly, we found that the ability of a given alternative splicing factor to behave as an enhancer or repressor of a specific splicing event can change during development. Our observations that splicing factors can change their effects on a substrate during development support a model in which combinatorial effects of multiple factors, both constitutive and developmentally regulated ones, contribute to the overall splicing decision.  相似文献   

19.
Different levels of alternative splicing among eukaryotes   总被引:22,自引:0,他引:22  
  相似文献   

20.
Many alternative splicing events are regulated by pentameric and hexameric intronic sequences that serve as binding sites for splicing regulatory factors. We hypothesized that intronic elements that regulate alternative splicing are under selective pressure for evolutionary conservation. Using a Wobble Aware Bulk Aligner genomic alignment of Caenorhabditis elegans and Caenorhabditis briggsae, we identified 147 alternatively spliced cassette exons that exhibit short regions of high nucleotide conservation in the introns flanking the alternative exon. In vivo experiments on the alternatively spliced let-2 gene confirm that these conserved regions can be important for alternative splicing regulation. Conserved intronic element sequences were collected into a dataset and the occurrence of each pentamer and hexamer motif was counted. We compared the frequency of pentamers and hexamers in the conserved intronic elements to a dataset of all C. elegans intron sequences in order to identify short intronic motifs that are more likely to be associated with alternative splicing. High-scoring motifs were examined for upstream or downstream preferences in introns surrounding alternative exons. Many of the high- scoring nematode pentamer and hexamer motifs correspond to known mammalian splicing regulatory sequences, such as (T)GCATG, indicating that the mechanism of alternative splicing regulation is well conserved in metazoans. A comparison of the analysis of the conserved intronic elements, and analysis of the entire introns flanking these same exons, reveals that focusing on intronic conservation can increase the sensitivity of detecting putative splicing regulatory motifs. This approach also identified novel sequences whose role in splicing is under investigation and has allowed us to take a step forward in defining a catalog of splicing regulatory elements for an organism. In vivo experiments confirm that one novel high-scoring sequence from our analysis, (T)CTATC, is important for alternative splicing regulation of the unc-52 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号