首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MicroRNA-143 expression in dorsal root ganglion neurons   总被引:1,自引:0,他引:1  
The unpleasant sensory and emotional experience of pain is initiated by excitation of primary afferent nociceptive neurons. Nerve damage or inflammation induces changes in nociceptive DRG neurons which contribute to both peripheral and central sensitization of pain-sensitive pathways. Recently, blockade of microRNA synthesis has been found to modulate the response of nociceptive neurons to inflammatory stimuli. However, little is known about the contributions of individual miRNAs to painful conditions. We compared miRNA expression in mouse sensory neurons and focussed on the localisation and control of miR-143. Using miRNA-arrays we compared the microRNA expression profile of intact lumbar DRG with one-day-old DRG cultures and found that nine miRNAs including miR-143 showed lower expression levels in cultures. Subsequent RT-qPCR confirmed array data and in-situ hybridisation localised miR-143 in the cytosol of sensory DRG neurons in situ and in vitro. Analysis of microbead-enriched neuron cultures showed significantly higher expression levels of miR-143 in isolectin B4 (I-B4) binding sensory neurons compared with neurons in the I-B4 negative flow-through fraction. In animal models of peripheral inflammation (injection of Complete Freund's Adjuvant, CFA) and nerve damage (transection of the sciatic nerve), we found that expression levels of miR-143 were significantly lower in DRGs ipsilateral to CFA injection or after nerve damage. Taken together, our data demonstrate for the first time miR-143 expression in nociceptive neurons. Since expression levels of miR-143 were higher in I-B4 positive neurons and declined in response to inflammation but not axotomy, miR-143 could selectively contribute to mRNA regulation in specific populations of nociceptors.  相似文献   

2.
Dorsal root ganglia (DRG) neurons spontaneously undergo neurite growth after nerve injury. MicroRNAs (miRNAs), as small, non-coding RNAs, negatively regulate gene expression in a variety of biological processes. The roles of miRNAs in the regulation of responses of DRG neurons to injury stimuli, however, are not fully understood. Here, microarray analysis was performed to profile the miRNAs in L4-L6 DRGs following rat sciatic nerve transection. The 26 known miRNAs were differentially expressed at 0, 1, 4, 7, 14 d post injury, and the potential targets of the miRNAs were involved in nerve regeneration, as analyzed by bioinformatics. Among the 26 miRNAs, microRNA-222 (miR-222) was our research focus because its increased expression promoted neurite outgrowth while it silencing by miR-222 inhibitor reduced neurite outgrowth. Knockdown experiments confirmed that phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a major inhibitor of nerve regeneration, was a direct target of miR-222 in DRG neurons. In addition, we found that miR-222 might regulate the phosphorylation of cAMP response element binding protein (CREB) through PTEN, and c-Jun activation might enhance the miR-222 expression. Collectively, our data suggest that miR-222 could regulate neurite outgrowth from DRG neurons by targeting PTEN.  相似文献   

3.
4.
5.
MicroRNAs (miRNAs) are small RNAs with diverse regulatory roles. The miR-124 miRNA is expressed in neurons in the developing and adult nervous system. Here we show that overexpression of miR-124 in differentiating mouse P19 cells promotes neurite outgrowth, while blocking miR-124 function delays neurite outgrowth and decreases acetylated α-tubulin. Altered neurite outgrowth also was observed in mouse primary cortical neurons when miR-124 expression was increased, or when miR-124 function was blocked. In uncommitted P19 cells, miR-124 expression led to disruption of actin filaments and stabilization of microtubules. Expression of miR-124 also decreased Cdc42 protein and affected the subcellular localization of Rac1, suggesting that miR-124 may act in part via alterations to members of the Rho GTPase family. Furthermore, constitutively active Cdc42 or Rac1 attenuated neurite outgrowth promoted by miR-124. To obtain a broader perspective, we identified mRNAs downregulated by miR-124 in P19 cells using microarrays. mRNAs for proteins involved in cytoskeletal regulation were enriched among mRNAs downregulated by miR-124. A miR-124 variant with an additional 5′ base failed to promote neurite outgrowth and downregulated substantially different mRNAs. These results indicate that miR-124 contributes to the control of neurite outgrowth during neuronal differentiation, possibly by regulation of the cytoskeleton.  相似文献   

6.
Galectin-1 (GAL-1), a member of a family of β-galactoside binding animal lectins, is predominantly expressed in isolectin B4 (IB4)-binding small non-peptidergic (glial cell line-derived neurotrophic factor (GDNF)-responsive) sensory neurons in the sections of adult rat dorsal root ganglia (DRG), but its functional role and the regulatory mechanisms of its expression in the peripheral nervous system remain unclear. In the present study, both recombinant nerve growth factor (NGF) and GDNF (50 ng/ml) promoted neurite outgrowth from cultured adult rat DRG neurons, whereas GDNF, but not NGF, significantly increased the number of IB4-binding neurons and the relative protein expression of GAL-1 in the neuron-enriched culture of DRG. The GAL-1 expression in immortalized adult rat Schwann cells IFRS1 and DRG neuron-IFRS1 cocultures was unaltered by treatment with GDNF, which suggests that GDNF/GAL-1 signaling axis is more related to neurite outgrowth, rather than neuron-Schwann cell interactions. The GDNF-induced neurite outgrowth and GAL-1 upregulation were attenuated by anti-GDNF family receptor (RET) antibody and phosphatidyl inositol-3′-phosphate-kinase (PI3K) inhibitor LY294002, suggesting that the neurite-outgrowth promoting activity of GDNF may be attributable, at least partially, to the upregulation of GAL-1 through RET-PI3K pathway. On the contrary, no significant differences were observed between GAL-1 knockout and wild-type mice in DRG neurite outgrowth in the presence or absence of GDNF. Considerable immunohistochemical colocalization of GAL-3 with GAL-1 in DRG sections and GDNF-induced upregulation of GAL-3 in cultured DRG neurons imply the functional redundancy between these galectins.  相似文献   

7.
8.
We have examined the expression of Thy-1, an abundant glycosylphosphatidylinositol (GPI)-anchored glycoprotein, in dorsal root ganglia (DRG) and associated nerve fascicles, during postnatal development and following a nerve crush. The expression levels of Thy-1 in DRG neurons, dorsal roots, and central processes in spinal cord were rather low at postnatal day 2, and gradually increased as DRG neurons matured. During early development, the expression of Thy-1 within DRG neurons was low and equally distributed between plasma membrane and cytosol. With maturation, the staining intensities of Thy-1 in both the plasma membrane and the cytosol of DRG neurons became increased. We also studied Thy-1 expression in the regeneration of mature DRG neurons following the crush injury of sciatic nerve. Two days after the crush injury, Thy-1 expression dramatically decreased in the DRG neurons on the lesion side. Between 4 and 7 days after the injury, the expression of Thy-1 gradually increased and returned to a normal level 1 week after the sciatic nerve crush. The time course of the up-regulation of Thy-1 expression during regeneration matched that of the recovery of sensory functions, such as pain withdraw reflex, placing reflex, and the score of Basso-Beattie-Bresnahan Locomotor Rating Scale. Taken together, our results suggest that Thy-1 expression is developmentally regulated and is closely associated with the functional maturation of DRG neurons during both postnatal development and nerve regeneration. Furthermore, perturbation of Thy-1 function with anti-Thy-1 antibodies promoted neurite outgrowth from primary cultured DRG neurons, again confirming the inhibitory role of Thy-1 on neurite outgrowth.  相似文献   

9.
We previously identified melanocortin receptor 4 (MC4R) in a search for genes associated with hypoglossal nerve regeneration. As melanocortins promote nerve regeneration after axonal injury, we investigated whether MC4R functions as a key receptor for peripheral nerve regeneration. In situ hybridization revealed that MC4R mRNA is induced in mouse hypoglossal motor neurons after axonal injury, whereas mRNAs for MC1R, MC2R, MC3R, and MC5R are not expressed either before or after nerve injury. This result was confirmed by RT-PCR. The level of MC4R mRNA expression increased significantly from day 3 after axotomy, reached a peak on day 5, and decreased to the control level on day 14. Similar induction of MC4R was observed in axotomized mouse dorsal root ganglia (DRGs). MC4R mRNA expression was induced exclusively among the MCR family in the L4-6 DRG after sciatic nerve injury. We further examined whether alpha-melanocortin stimulating hormone (alpha-MSH) promotes neurite elongation via MC4R. In mouse DRG neuron culture, alpha-MSH significantly promoted neurite outgrowth at a concentration of 10(-8) mol/L. This neurite-elongation effect was entirely inhibited by the addition of a selective MC4R blocker, JKC-363. Therefore, it is concluded that alpha-MSH could stimulate neurite elongation via MC4R in DRG neurons. The present results suggest that induction of MC4R is crucial for motor and sensory neurons to regenerate after axonal injury.  相似文献   

10.
11.
The tooth pulp innervation originates from the trigeminal ganglion (TG) and represents an illustrative example of tissue targeting by sensory nerves. Pulpal fibroblasts strongly promote neurite outgrowth from TG neurons in vitro. In the present study, we have investigated the possible participation of laminins (LNs), potent neuritogenic extracellular matrix components. Immunohistochemistry of human tooth pulp demonstrated expression of LN alpha1, alpha2, alpha4, alpha5, beta1 and gamma1, and laminin-binding integrin alpha3, alpha6, beta1 and beta4 chains in nerves. Though faintly stained for laminins in situ, pulpal fibroblasts reacted, once cultured and permeabilized, with antibodies to LN alpha2, alpha4, beta1 and gamma1 chains by flow cytometry. The cells also expressed the corresponding mRNAs and were able to assemble and secrete LN-2 (alpha2beta1gamma1, Lm-211) and LN-8 (alpha4beta1gamma1, Lm-411). LN-8 displayed a chondroitin sulphate (CS) modification in its alpha4 chain. In functional assays, mouse LN-1 (alpha1beta1gamma1, Lm-111) and recombinant human (rh) LN-8, but not native or rhLN-2, strongly promoted neurite outgrowth from TG neurons, mimicking the effect of cultured pulp fibroblast. Altogether, the results indicate that LN-2 and LN-8 are synthesized by tooth pulp fibroblasts and differentially promote neurite outgrowth from TG neurons. LN-8 may contribute to sensory innervation of teeth and other tissues during development and/or regeneration.  相似文献   

12.
13.
The pathogenetic role of vascular endothelial growth factor (VEGF) in long-term retinal and kidney complications of diabetes has been demonstrated. Conversely, little is known in diabetic neuropathy. We examined the modulation of VEGF pathway at mRNA and protein level on dorsal root ganglion (DRG) neurons and Schwann cells (SC) induced by hyperglycaemia. Moreover, we studied the effects of VEGF neutralization on hyperglycemic DRG neurons and streptozotocin-induced diabetic neuropathy. Our findings demonstrated that DRG neurons were not affected by the direct exposition to hyperglycaemia, whereas showed an impairment of neurite outgrowth ability when exposed to the medium of SC cultured in hyperglycaemia. This was mediated by an altered regulation of VEGF and FLT-1 receptors. Hyperglycaemia increased VEGF and FLT-1 mRNA without changing their intracellular protein levels in DRG neurons, decreased intracellular and secreted protein levels without changing mRNA level in SC, while reduced the expression of the soluble receptor sFLT-1 both in DRG neurons and SC. Bevacizumab, a molecule that inhibits VEGF activity preventing the interaction with its receptors, restored neurite outgrowth and normalized FLT-1 mRNA and protein levels in co-cultures. In diabetic rats, it both prevented and restored nerve conduction velocity and nociceptive thresholds. We demonstrated that hyperglycaemia early affected neurite outgrowth through the impairment of SC-derived VEGF/FLT-1 signaling and that the neutralization of SC-secreted VEGF was protective both in vitro and in vivo models of diabetic neuropathy.  相似文献   

14.
The response of embryonic chick nodose ganglion (neural placode-derived) and dorsal root ganglion (neural crest-derived) sensory neurons to the survival and neurite-promoting activity of brain-derived neurotrophic factor (BDNF) was studied in culture. In dissociated, neuron-enriched cultures established from chick embryos between Day 6 (E6) and Day 12 (E12) of development, both nodose ganglion (NG) and dorsal root ganglion (DRG) neurons were responsive on laminin-coated culture dishes to BDNF. In the case of NG, BDNF elicited neurite outgrowth from 40 to 50% of the neurons plated at three embryonic ages; E6, E9, and E12. At the same ages, nerve growth factor (NGF) alone or in combination with BDNF, had little or no effect upon neurite outgrowth from NG neurons. The response of NG neurons to BDNF was dose dependent and was sustainable for at least 7 days in culture. Surprisingly, in view of a previous study carried out using polyornithine as a substrate for neuronal cell attachment, on laminin-coated dishes BDNF also sustained survival and neurite outgrowth from a high percentage (60-70%) of DRG neurons taken from E6 embryos. In marked contrast to NG neurons, the combined effect of saturating levels of BDNF and NGF activity on DRG neurons was greater than the effect of either agent alone at all embryonic ages studied. Under similar culture conditions, BDNF did not elicit survival and neurite outgrowth from paravertebral chain sympathetic neurons or parasympathetic ciliary ganglion neurons. We propose that primary sensory neurons, regardless of their embryological origin, are responsive to a "central-target" (CNS) derived neurotrophic factor--BDNF, while they are differentially responsive to "peripheral-target"-derived growth factors, such as NGF, depending on whether the neurons are of neural crest or placodal origin.  相似文献   

15.
16.
The transplantation of Schwann cells (SCs) could successfully promote axonal regeneration. This is likely to attribute to the adhesion molecules expression and growth factors secretion of SCs. But which factor(s) play a key role has not been precisely studied. In this study, an outgrowth assay using dorsal root ganglia (DRG) neuron-SC co-culture system in vitro was performed. Co-culture of SCs or application of SC-conditioned medium (CM) substantially and significantly increased DRG neurite outgrowth. Further, nerve growth factor and NGF receptor (TrkA) mRNA were highly expressed in Schwann cells and DRG neuron, respectively. The high concentration of NGF protein was detected in SC-CM. When K-252a, a specific inhibitor of NGF receptor was added, DRG neurite outgrowth was significantly decreased in a concentration-dependent manner. These data strongly suggest that SCs play important roles in neurite outgrowth of DRG neurons by secreted NGF.  相似文献   

17.
18.
Hepatocyte growth factor (HGF) is a neurotrophic factor and its role in peripheral nerves has been relatively unknown. In this study, biological functions of HGF and its receptor c-met have been investigated in the context of regeneration of damaged peripheral nerves. Axotomy of the peripheral branch of sensory neurons from embryonic dorsal root ganglia (DRG) resulted in the increased protein levels of HGF and phosphorylated c-met. When the neuronal cultures were treated with a pharmacological inhibitor of c-met, PHA665752, the length of axotomy-induced outgrowth of neurite was significantly reduced. On the other hand, the addition of recombinant HGF proteins to the neuronal culture facilitated axon outgrowth. In the nerve crush mouse model, the protein level of HGF was increased around the injury site by almost 5.5-fold at 24 h post injury compared to control mice and was maintained at elevated levels for another 6 days. The amount of phosphorylated c-met receptor in sciatic nerve was also observed to be higher than control mice. When PHA665752 was locally applied to the injury site of sciatic nerve, axon outgrowth and injury mediated induction of cJun protein were effectively inhibited, indicating the functional involvement of HGF/c-met pathway in the nerve regeneration process. When extra HGF was exogenously provided by intramuscular injection of plasmid DNA expressing HGF, axon outgrowth from damaged sciatic nerve and cJun expression level were enhanced. Taken together, these results suggested that HGF/c-met pathway plays important roles in axon outgrowth by directly interacting with sensory neurons and thus HGF might be a useful tool for developing therapeutics for peripheral neuropathy.  相似文献   

19.
Both neurotrophins (NTs) and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons and nerve-muscle communication. However, much less is known about the association of target SKM cells with distinct NTs on the expression of mRNAs for preprotachykinin (PPT), calcitonin-gene related peptide (CGRP), neurofilament 200 (NF-200), and microtubule associated protein 2 (MAP-2) in dorsal root ganglion (DRG) sensory neurons. In the present study, a neuromuscular coculture model of dissociated dorsal root ganglion (DRG) neurons and SKM cells was established. The morphology of DRG neurons and SKM cells in coculture was observed with an inverted phase contrast microscope. The effects of nerve growth factor (NGF) or neurotrophin-3 (NT-3) on the expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 was analyzed by real time-PCR assay. The morphology of DRG neuronal cell bodies and SKM cells in neuromuscular coculture at different conditions was similar. The neurons presented evidence of dense neurite outgrowth in the presence of distinct NTs in neuromuscular cocultures. NGF and NT-3 increased mRNA levels of PPT, CGRP, and NF-200, but not MAP-2, in neuromuscular cocultures. These results offer new clues towards a better understanding of the association of target SKM cells with distinct NTs on the expression of mRNAs for PPT, CGRP, NF-200 and MAP-2, and implicate the association of target SKM cells and NTs with DRG sensory neuronal phenotypes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号