首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Murine Fc gamma RII and Fc gamma RIII have highly homologous extracellular domains, but unrelated transmembrane and intracytoplasmic (IC) domains. Murine Fc gamma RIIb1 and b2 are two isoforms of single-chain receptors which differ only by 47 aa in their IC domain. Murine Fc gamma RIII are composed of an IgG-binding alpha-chain, the intracellular portion of which is unrelated to that of Fc gamma RII, and of a homodimeric gamma-chain which also associates with Fc epsilon RI. Murine mast cells express Fc gamma RII, Fc gamma RIII, and Fc epsilon RI. They can be induced to degranulate by murine IgG immune complexes or by F(ab')2 fragments of the rat anti-murine Fc gamma RII/III mAb 2.4G2, complexed to mouse anti-rat (MAR) F(ab')2. In order to determine which murine Fc gamma R can activate mast cells, cDNA encoding murine Fc gamma RIIb1, Fc gamma RIIb2 or Fc gamma RIII alpha were stably transfected into RBL-2H3 cells. Murine Fc gamma RIII but not Fc gamma RIIb1 or Fc gamma RIIb2 induced serotonin release when aggregated by (2.4G2-MAR) F(ab')2 complexes. The respective roles of the IC domains of murine Fc gamma RIII subunits in signal transduction were investigated by stably transfecting cDNA encoding IC-deleted or chimeric murine Fc gamma R into RBL-2H3 cells. The substitution of the IC domain of murine Fc gamma RII for that of murine Fc gamma RIII gamma, but not that of murine Fc gamma RIII alpha, conferred the ability to trigger serotonin release. The deletion of IC sequences of the alpha subunit did not alter the ability of murine Fc gamma RIII to trigger serotonin release. It follows that 1) murine Fc gamma RIII, but not Fc gamma RII, can induce RBL cells to release serotonin, 2) the aggregation of the IC domain of the murine Fc gamma RIII gamma subunit is sufficient, but 3) the IC domain of the murine Fc gamma RIII alpha subunit is neither sufficient nor necessary for triggering serotonin release.  相似文献   

3.
4.
The high affinity receptor for IgE (Fc epsilon RI) found on mast cells and basophils is a tetrameric complex of a single alpha subunit, a single beta subunit, and two identical gamma subunits. The genes for the three subunits of mouse Fc epsilon RI have now been cloned from the mast cell line, PT18. When compared at the DNA level, the rat and mouse subunits are similarly conserved. However, at the protein level the homology between mouse and rat alpha is surprisingly low (71% identities) especially in the cytoplasmic regions (57% identities) which are of different length (25 and 20 residues, respectively). By contrast the beta and gamma are homogeneously conserved between mouse and rat (83 and 93% identities, respectively). The consensus amino acid sequence of the alpha subunit derived from three species (rat, mouse, and human) shows that the cytoplasmic tail diverges to the same extent as the leader peptide. Conversely, the transmembrane domain of the alpha is highly conserved and contains 10 consecutive residues that are identical. Comparisons between mouse Fc epsilon RI and other mouse proteins reveal regions of high homology between the alpha subunit and Fc gamma RIIa and between the gamma subunit and the zeta chain of the T cell receptor. Cells transfected with the alpha gene express the alpha subunit on their surface very inefficiently. Efficient expression is only achieved after co-transfection of the three rodent genes or of the human alpha gene together with the rodent gamma without apparent need for beta. The subunits are completely interchangeable upon transfection so that various chimeric mouse-rat-human receptors can be expressed.  相似文献   

5.
The high affinity receptor for IgE (Fc epsilon RI) is a tetrameric structure consisting of a single IgE-binding alpha subunit, a single beta subunit, and two disulfide-linked gamma subunits. The alpha subunit of Fc epsilon RI and most Fc receptors are homologous members of the Ig superfamily. By contrast, the beta and gamma subunits from Fc epsilon RI are not homologous to the Ig superfamily. The gamma-chains do share a region of high homology with the zeta-chain of the TCR. No homology has been found to date for beta with any published sequence. Here, we report that a single copy gene encodes Fc epsilon RI beta and that the locus for Fc epsilon RI beta is found on mouse chromosome 19, genetically linked to the Ly-1 (Ly-12) locus and in a region that also contains Ly-10 and Ly-44 (CD20). Homology comparisons among these molecules reveal limited regions of homology between Fc epsilon RI beta and Ly-44 (CD20) as well as other striking similarities: both molecules have four putative transmembrane segments and a probably topology where both amino- and carboxytermini protrude into the cytoplasm. In addition, we show that a single gene for FC epsilon RI gamma is found at the distal end of mouse chromosome 1, clustered in a region where Fc epsilon RI alpha has also been linked to Fc gamma RII. At least one of the two forms of Fc gamma RII has recently been shown to contain gamma subunits identical to the gamma subunits of Fc epsilon RI. The close association of the genes for Fc epsilon RI alpha, FC gamma RII, and their shared gamma subunits raises interesting implications regarding coordinate regulation of gene expression.  相似文献   

6.
The receptor for IgE (Fc epsilon RI) is a multimeric complex containing one alpha chain, one beta chain with four transmembrane domains and one homodimer of disulfide-linked gamma-chains. The Fc epsilon RI gamma-chains form additional disulfide-linked dimers with the homologous zeta- and eta-chains, as part of the TCR complex. The low affinity receptor for IgG (Fc gamma RIII)2 on NK cells is also associated with zeta-chains. Here we show that the gamma-chain is expressed in NK cells both as a group of heterogenous gamma gamma homodimers and also as a heterodimer bound to zeta. Fc gamma RIIIA is associated with three types of dimers zeta zeta, gamma zeta, and notably gamma gamma as well. In fact, gamma gamma appears to be the predominant species associating with Fc gamma RIIIA. The surface expressed Fc epsilon RI also associates with the same group of heterogenous gamma gamma homodimers. We also show that there is no C-terminal posttranslational cleavage of gamma occurring before its insertion into the plasma membrane as previously suggested. Thus, like the TCR, Fc gamma RIIIA may form a variety of receptor isoforms, though at present we do not understand the functional implications of these structures.  相似文献   

7.
The high affinity receptor for IgE (Fc epsilon RI) is present on mast cells and basophils, and the aggregation of IgE-occupied receptors by Ag is responsible for the release of allergic mediators. The Fc epsilon RI is composed of at least three different subunits, alpha, beta, and gamma, with the alpha subunit binding IgE. The series of biochemical events linking receptor aggregation to the release of mediators has not been fully delineated. As a step towards understanding these processes, and for the development of functional cell lines, we have transfected the human Fc epsilon RI alpha subunit into the rat mast cell line RBL 2H3. These human Fc epsilon RI alpha-transfected cell lines have been characterized with respect to the association of the human alpha subunit with endogenous rat beta and gamma subunits and the ability of aggregated Fc epsilon RI alpha subunits to mediate a variety of biochemical events. The signal transduction events monitored include phosphoinositide hydrolysis, Ca2+ mobilization, tyrosine phosphorylation, histamine release, and arachidonic acid metabolism. In all cases, the events mediated by aggregating human Fc epsilon RI alpha subunits were indistinguishable from those produced via the rat Fc epsilon RI alpha. These results demonstrate that the human Fc epsilon RI alpha subunit can functionally substitute for the rat Fc epsilon RI alpha subunit during signal transduction. The availability of this cell line will provide a means of evaluating potential Fc epsilon RI antagonists.  相似文献   

8.
The cellular responses initiated by cross-linking rodent Fc gamma RII-b1, Fc gamma RII-b2, Fc gamma RIII, and Fc epsilon RI in mast cells were compared. Individual murine Fc gamma R isoforms were transfected into rat basophilic leukemia cells and after cross-linking the FcR, changes in the phosphorylation of protein tyrosines, in the level of intracellular Ca2+, in the hydrolysis of phosphoinositides, and in the release of arachidonic acid metabolites and hexosaminidase were monitored. Cross-linking of Fc gamma RIII initiated all of these early and late biochemical functions, and although they were quantitatively somewhat smaller, the responses were qualitatively indistinguishable from those stimulated by the endogenous Fc epsilon RI. However, despite ample expression, neither Fc gamma RII-b1 nor Fc gamma RII-b2 stimulated these functions when cross-linked. The functional differences between Fc gamma RII and Fc gamma RIII were studied further by assessing the responses to cross-linking of the endogenous Fc gamma R (Fc gamma RII-b1, Fc gamma RII-b2, and Fc gamma RIII) on P815 mouse mastocytoma cells that had been transfected with normal or functionally defective Fc epsilon RI. Two types of mutant subunits had previously been observed to impair the activity of Fc epsilon RI: gamma-chains missing the cytoplasmic domain, and beta-chains missing the COOH-terminal cytoplasmic domain. In both types of transfectants the functional inhibition of the endogenous Fc gamma R paralleled that of the transfected Fc epsilon RI. These results are consistent with the gamma subunit being associated with the functions of Fc gamma RIII as well as of Fc epsilon RI. The functional results also complement the recently reported evidence that Fc gamma RIII can interact with Fc epsilon RI beta-subunits (J. Exp. Med. 175:447, 1992).  相似文献   

9.
Type III receptors for the Fc portion of IgG (Fc gamma RIII), initially characterized on macrophages and NK cells, are also expressed on several pre-B cell lines. Surface expression of Fc gamma RIII requires the association of the ligand binding alpha-chain with homodimeric gamma-chains. Type II Fc gamma R is homologous to Fc gamma RIII alpha-chain in the extracellular portion and differs in the transmembrane and cytoplasmic domains. The role of Fc gamma R in cell activation was investigated by expressing Fc gamma RIII and the lymphocyte-specific b1 isoform of Fc gamma RII (Fc gamma RIIb1) in an Fc gamma R-negative, sIgG-positive B-cell line. We found that, in contrast to Fc gamma RIIb1, Fc gamma RIII triggers the same events of cell activation as sIG i.e. Ca2+ mobilization, tyrosine phosphorylation and IL-2 secretion. By expressing cytoplasmic domain-lacking Fc gamma RIII alpha-chain in the absence or in the presence of gamma-chains, we demonstrated that cell activation via Fc gamma RIII requires the co-expression of gamma-chains, and is independent of the cytoplasmic portion of the alpha-chain. Furthermore, the cytoplasmic portion of the gamma-chain, fused to the extracellular and transmembrane domains of Fc gamma RII confers on the chimeric receptor the ability to trigger cell activation. Mutation of one tyrosine residue in the cytoplasmic domain of the gamma-chain prevented triggering of cytoplasmic signals. We therefore demonstrate that a tyrosine-containing motif, present in the cytoplasmic domain of the associated gamma-chain, is necessary and sufficient to trigger cell activation via Fc gamma RIII.  相似文献   

10.
It is believed that mouse Fc gamma RIII arose by an evolutionarily recent recombination, which brought together the extracellular domains from Fc gamma RII with the transmembrane/cytoplasmic region from the ancestor Fc gamma RIII. Here, we report identification of a mouse gene encoding a transmembrane receptor that may be regarded as the true ortholog of nonrodent CD16/Fc gamma RIII. Designated CD16-2, the novel protein is highly similar to human Fc gamma RIIIA in the signal peptide (60% identical residues), and in the extracellular domains (65%). Although the similarity between the two proteins is less conspicuous in the transmembrane/cytoplasmic region (54%), it is higher than between human Fc gamma RIIIA and mouse Fc gamma RIII (44%). However, the conserved transmembrane motif LFAVDTGL shared by rodent and human Fc gamma RIII and Fc epsilon RI has two replacements in CD16-2. The CD16-2 gene is tightly linked to the Fc gamma RIII and Fc gamma RII genes and consists of five exons. Northern blot analysis revealed that CD16-2 is expressed in peripheral blood leukocytes, as well as in spleen, thymus, colon and intestine. RT-PCR showed prominent expression in macrophage cell line J774. Based on sequence comparisons, it is suggested that the modern repertoire of the mammalian low affinity Fc receptors has resulted from repetitive duplications and/or recombinations of three ancestral genes.  相似文献   

11.
We describe the isolation and characterization of the gene encoding the mouse high affinity Fc receptor Fc gamma RI. Using a mouse cDNA Fc gamma RI probe four unique overlapping genomic clones were isolated and were found to encode the entire 9 kb of the mouse Fc gamma RI gene. Sequence analysis of the gene showed that six exons account for the entire Fc gamma RI cDNA sequences including the 5'- and 3'-untranslated sequences. The first and second exons encode the signal peptide; exons 3, 4, and 5 encode the extracellular Ig binding domains; and exon 6 encodes the transmembrane domain, the cytoplasmic region, and the entire 3'-untranslated sequence. This exon pattern is similar to Fc gamma RIII and Fc epsilon RI but differs from the related Fc gamma RII gene which contains 10 exons and encodes the b1 and b2 Fc gamma RII. Southern blot analysis had shown that the mouse Fc gamma RI gene is a single copy gene with no RFLP in inbred strains of mice, but analysis of an intersubspecies backcross of mice showed that unlike other mouse FcR genes which are on mouse chromosome 1 the locus encoding Fc gamma RI, termed Fcg1, is located on chromosome 3. Interestingly, the Fcg1 locus is located near the end of a region with known linkage homology to human chromosome 1. Analysis of human x rodent somatic cell hybrid cell lines indicates that the human FCG1 locus encoding the human Fc gamma RI maps to chromosome I and therefore possibly linked to other FcR genes on this chromosome. These results suggest that the linkage relationships among these genes in the human genome are not preserved in the mouse.  相似文献   

12.
The gamma subunit of the high affinity IgE receptor, Fc epsilon RI, is a member of a family of proteins which form disulfide-linked dimers. This family also includes the zeta- and eta-chains of the T cell receptor. Engagement of Fc epsilon RI activates src-related protein tyrosine kinases in basophils and mast cells. However, the role of individual subunits of Fc epsilon RI in this activation is still not known. In an effort to determine the function of Fc epsilon RI-gamma, we used chimeric proteins containing the extracellular and transmembrane domains of the alpha chain of the human interleukin 2 receptor (Tac) and the cytoplasmic domains of either T cell receptor-zeta or Fc epsilon RI-gamma. We show that while cross-linking of the Tac chimeras in the rat basophilic leukemia cell line RBL-2H3 resulted in the tyrosine phosphorylation of a subset of proteins and a portion of the degranulation normally observed after Fc epsilon RI-mediated stimulation, no detectable activation of p56lyn or pp60c-src was observed. In contrast, an apparent transient deactivation of these two kinases was observed after Tac chimera cross-linking. These observations suggest that Fc epsilon RI-gamma is responsible for some, but not all, of the signaling that occurs after engagement of its receptor, and that other receptor subunits may also play important roles in this signaling process.  相似文献   

13.
The T cell receptor (TCR) is a molecular complex formed by at least seven transmembrane proteins: the antigen/major histocompatibility complex recognition unit (Ti alpha-beta heterodimer) and the invariant CD3 chains (gamma, delta, epsilon, zeta, and eta). In addition to targeting partially assembled Ti alpha-beta CD3 gamma delta epsilon TCR complexes to the cell surface, CD3 zeta appears to be essential for interleukin-2 production after TCR stimulation with antigen/major histocompatibility complex. The gamma chain of the high affinity Fc receptor for IgE (Fc epsilon RI gamma) has significant structural homology to CD3 zeta and the related CD3 eta subunit. To identify the functional significance of sequence homologies between CD3 zeta and Fc epsilon RI gamma in T cells, we have transfected a Fc epsilon RI gamma cDNA into a T cell hybridoma lacking CD3 zeta and CD3 eta proteins. Herein we show that a Fc epsilon RI gamma-gamma homodimer associates with TCR components to up-regulate TCR surface expression. A TCR composed of Ti alpha-beta CD3 gamma delta epsilon Fc epsilon RI gamma-gamma is sufficient to restore the coupling of TCR antigen recognition to the interleukin-2 induction pathway, demonstrating the functional significance of structural homology between the above receptor subunits. These results, in conjunction with the recent finding that CD3 zeta, CD3 eta, and Fc epsilon RI gamma are coexpressed in certain T cells as subunits of an unusual TCR isoform, suggest that Fc epsilon RI gamma is likely to play a role in T cell lineage function.  相似文献   

14.
Fc receptors and immunoglobulin binding factors   总被引:5,自引:0,他引:5  
W H Fridman 《FASEB journal》1991,5(12):2684-2690
Receptors for the Fc portion of Ig (Fc receptors, FcR) are found on all cell types of the immune system. Three types of FcR react with IgG: Fc gamma RI is a high-affinity receptor binding IgG monomers whereas Fc gamma RII and Fc gamma RIII are low-affinity receptors binding IgG immune complexes; the three types of Fc gamma R are members of the Ig superfamily. Two FcR react with IgE:Fc epsilon RI is a multichain receptor binding IgE with high affinity; it is composed of an IgE-binding alpha chain, homologous to Fc gamma RIII, and of gamma and beta chains that are necessary for receptor expression and signal transduction. The low-affinity Fc epsilon RII is the only FcR described so far that is not a member of the Ig superfamily but resembles animal lectins; it is composed of a transmembrane chain with an intracytoplasmic NH2 terminus. Fc alpha R has homology with Fc gamma R and is a member of the Ig superfamily. Receptors for IgM and IgD are not characterized yet. Finally, Ig transport is made by FcR-like molecules such as the poly-Ig receptor or an MHC-like receptor found on neonatal intestine. A remarkable property of most FcR is the fact that they are released in cell supernatants and circulate in biological fluids as immunoglobulin binding factors (IBF) generated either by cleavage at the cell membrane or by splicing of FcR transmembrane exon. Immunoglobulin binding factors may interfere with Ig-mediated functions and have direct immunoregulatory activities. Involvement of FcR or IBF has been postulated in several diseases, and monoclonal antibodies to FcR are beginning to be used in therapeutics, particularly to target cytotoxic effector lymphocytes and monocytes to tumor cells.  相似文献   

15.
NK cells express Fc gamma RIII (CD16), which is responsible for IgG-dependent cell cytotoxicity and for production of several cytokines and chemokines. Whereas Fc gamma RIII on NK cells is composed of both Fc gamma RIII alpha and FcR gamma chains, that on mast cells is distinct from NK cells and made of Fc gamma RIII alpha, FcR beta, and FcR gamma. Mast cells show degranulation and release several mediators, which cause anaphylactic responses upon cross-linking of Fc gamma RIII as well as Fc epsilon RI with aggregated IgE. In this paper, we examined whether IgE activates NK cells through Fc gamma RIII on their cell surface. We found that NK cells produce several cytokines and chemokines related to an allergic reaction upon IgE stimulation. Furthermore, NK cells exhibited cytotoxicity against IgE-coated target cells in an Fc gamma RIII-dependent manner. These effects of IgE through Fc gamma RIII were not observed in NK cells from FcR gamma-deficient mice lacking Fc gamma RIII expression. Collectively, these results demonstrate that NK cells can be activated with IgE through Fc gamma RIII and exhibit both cytokine/chemokine production and Ab-dependent cell cytotoxicity. These data imply that not only mast cells but also NK cells may contribute to IgE-mediated allergic responses.  相似文献   

16.
Expression of a functional Fc epsilon RI on rat eosinophils and macrophages   总被引:3,自引:0,他引:3  
Besides its crucial role in type I hypersensitivity reactions, IgE is involved in anti-parasite immunity. This role has been clearly demonstrated in both human and rat schistosomiasis, but remains controversial in the mouse. Since the cellular distribution of the high affinity IgE receptor, Fc epsilon RI, differs in humans and mice, it might explain the differences in effector function of IgE between the two species. In humans, eosinophils and macrophages induce IgE-dependent cytotoxicity toward Schistosoma mansoni larvae, which involves Fc epsilon RI in the case of eosinophils. In the present study, we have investigated the expression and function of Fc epsilon RI in rat eosinophils and macrophages. We demonstrate, by flow cytometry, fluorescence microscopy, and western blot analysis, that in rats, as in humans, a functional alpha gamma 2 trimeric Fc epsilon RI is expressed on eosinophils and macrophages. We also show that these two cell types can induce IgE-mediated, Fc epsilon RI-dependent cellular cytotoxicity toward schistosomula. These results thus provide a molecular basis for the differences observed between rat and mouse regarding IgE-mediated anti-parasite immunity.  相似文献   

17.
To define functionally critical regions of the high affinity receptor for IgE (Fc epsilon RI), we stably transfected P815 cells with mutated cDNAs coding for subunits with truncated cytoplasmic domains (CD). In addition, to examine further the role of the beta subunit, stable transfectants expressing chimeric Fc epsilon RI without beta subunits were generated. Transfectants were tested for receptor-mediated changes in intracellular Ca2+, for stimulated hydrolysis of phosphoinositides, and for protein tyrosine phosphorylation. In all cases these biochemical signals were affected coordinately, suggesting that they are coupled, possibly in a single pathway. Truncation of the alpha subunit or of the NH2-terminal CD of the beta subunit had no effect, but Fc epsilon RIs with beta subunits missing the COOH-terminal CD were inactive. Interestingly, receptors in cells transfected only with human Fc epsilon RI(alpha) (which utilize the gamma chains endogenously synthesized by the P815 cells but which contain no beta subunits) responded normally. Therefore, the beta subunit influences the functions studied but is not essential. Although structural analysis excluded a straightforward mechanism, truncation of the CD of the gamma chain led to loss of signaling.  相似文献   

18.
Fc gamma RIII is a family of protein isoforms encoded by at least two distinct, yet highly homologous, genes. Fc gamma RIII on neutrophils is a glycosylphosphatidylinositol-linked protein with an allelic polymorphism (NA1/NA2) while Fc gamma RIII on NK cells (Fc gamma RIIINK) is an exclusively transmembrane protein without the NA polymorphism. The relationship of the isoform of Fc gamma RIII expressed on cultured monocytes (Fc gamma RIIIM phi) to these two forms, however, is unclear because some evidence suggests lowered expression of Fc gamma RIIIM phi in paroxysmal nocturnal hemoglobinuria (unlike Fc gamma RIIINK) and a unique deglycosylated m.w. for Fc gamma RIIIM phi. In this study we demonstrate that, as with Fc gamma RIIINK, Fc gamma RIIIM phi is resistant to the action of phosphatidylinositol-specific phospholipase C and is expressed at normal levels on affected (glycosylphosphatidylinositol-anchor negative) cultured monocytes from patients with paroxysmal nocturnal hemoglobinuria. Fc gamma RIIIM phi is also shed from the cell surface upon incubation at 37 degrees C. However, Fc gamma RIIIM phi and Fc gamma RIIINK have different m.w. as glycosylated proteins despite the same deglycosylated m.w. Thus, each cell type appears to express distinct glycoforms. These differences in glycosylation may influence the functional properties of the receptor.  相似文献   

19.
20.
Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon tyrosine activation motifs in RBL-2H3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号