首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic structure of a population of the ectomycorrhizal basidiomycete Laccaria amethystina (Bolt. ex Hooker) Murr. was assessed in a closed 150-year-old beech (Fagus sylvatica L.) forest in the Vosges Mountains in northeastern France. During the autumn of 1994 and 1997, sporophores were collected from three 100-m2 sampling plots located along a 120-m transect crossing the beech stand. The genetic variation of 676 sporophores was initially estimated using heteroduplex analysis of the ribosomal DNA intergenic spacer (IGS1). Ten unique IGS1 heteroduplex/homoduplex patterns were identified, although three types represented most of the sporophores analysed. Each group of IGS1 type was then analysed using random amplified microsatellite analysis (RAMS). RAMS resolved 388 different genotypes amongst the 634 sporophores analysed from the three plots during the autumn of 1994 and 1997. Density as high as 130 genets per 100 m2 was observed during the autumn of 1994. The largest clone covered approximately 1 m2, but most genets covered a few cm2 and produced only one to three sporophores. Only eight genotypes identified in 1994 were found in 1997. Although L. amethystina has the capacity for vegetative persistence, the present study indicates that its populations maintain a genetic structure more consistent with a high frequency of sexual reproduction. This suggests that beech trees could be recolonized by new genotypes each year. Alternatively, this spatial distribution may also arise from erratic fruiting of underground persistent genets. These features (i.e. numerous genets of small size), typical of ruderal species, contrast with studies carried out on other ectomycorrhizal basidiomycetes occurring in mature closed forests.  相似文献   

2.
We determined the size of genets of late-stage ectomycorrhizal fungi in field sites in coastal Northern California. Basidiocarps were collected, mapped and subjected to genetic fingerprinting using amplified fragment length polymorphisms (AFLPs). The minimum size estimates for the largest genets of Amanita francheti, Lactarius xanthogalactus and Russula cremoricolor were 1.5, 9.3 and 1.1 m2, respectively. The molecular markers also showed that R. cremoricolor is dimorphic, with red- and white-capped morphotypes of this species forming a continuous population. Our results suggest that spore propagation plays a much more important role in the life history of the Russulaceae in undisturbed forest settings than previously recognized. Fungi appearing late in the succession sequence and systems without obvious disturbance therefore do not necessarily colonize primarily by mycelium.  相似文献   

3.
Ectomycorrhizal symbiosis of tropical African trees   总被引:1,自引:0,他引:1  
  相似文献   

4.
Leaf litter samples of 12 dicotyledonous tree species (belonging to eight families) growing in a dry tropical forest and in early stages of decomposition were studied for the presence of litter fungi. Equal-sized segments of the leaves incubated in moist chambers were observed every day for 30 d for the presence of fungi. Invariably, the fungal assemblage on the litter of each tree species was dominated by a given fungal species. The diversity of fungi present in the litter varied with the tree species although many species of fungi occurred in the litter of all 12 species. A Pestalotiopsis species dominated the litter fungal assemblage of five trees and was common in the litter of all tree species. The present study and earlier studies from our lab indicate that fungi have evolved traits such as thermotolerant spores, ability to utilize toxic furaldehydes, ability to produce cell wall destructuring enzymes and an endophyte-litter fungus life style to survive and establish themselves in fire-prone forests such as the one studied here. This study shows that in the dry tropical forest, the leaf litter fungal assemblage is governed more by the environment than by the plant species.  相似文献   

5.
We conducted bioassay experiments to investigate the soil propagule banks of ectomycorrhizal (EM) fungi in old-growth forests along an elevation gradient and compared the elevation pattern with the composition of EM fungi on existing roots in the field. In total, 150 soil cores were collected from three forests on Mt. Ishizuchi, western Japan, and subjected to bioassays using Pinus densiflora and Betula maximowicziana. Using molecular analyses, we recorded 23 EM fungal species in the assayed propagule banks. Eight species (34.8 %) were shared across the three sites, which ranged from a warm–temperate evergreen mixed forest to a subalpine conifer forest. The elevation pattern of the assayed propagule banks differed dramatically from that of EM fungi on existing roots along the same gradient, where only a small proportion of EM fungal species (3.5 %) were shared across sites. The EM fungal species found in the assayed propagule banks included many pioneer fungal species and composition differed significantly from that on existing roots. Furthermore, only 4 of 23 species were shared between the two host species, indicating a strong effect of bioassay host identity in determining the propagule banks of EM fungi. These results imply that the assayed propagule bank is less affected by climate compared to EM fungal communities on existing roots. The dominance of disturbance-dependent fungal species in the assayed propagule banks may result in higher ecosystem resilience to disturbance even in old-growth temperate forests.  相似文献   

6.
Resupinate thelephoroid fungi (hereafter called tomentelloid fungi) have a world-wide distribution and comprise approximately 70 basidiomycete species with inconspicuous, resupinate sporocarps. It is only recently that their ability to form ectomycorrhizas (EM) has been realized, so their distribution, abundance and significance as mycobionts in forest ecosystems is still largely unexplored. In order to provide baseline data for future ecological studies of tomentelloid fungi, we explored their presence and abundance in nine Swedish boreal forests in which the EM communities had been analysed. Phylogenetic analyses were used to compare the internal transcribed spacer of nuclear ribosomal DNA (ITS rDNA) sequence data obtained from mycobionts on single ectomycorrhizal tips with that obtained from sporocarps of identified tomentelloid fungi. Five species of Tomentella and one species of Pseudotomentella were identified as ectomycorrhizal fungi. The symbiotic nature of Tomentella bryophila, T. stuposa, T. badia and T. atramentaria is demonstrated for the first time. T. stuposa and Pseudotomentella tristis were the most commonly encountered tomentelloid fungi, with the other species, including T. sublilacina, only being recorded from single stands. Overall, tomentelloid fungi were found in five of the studies, colonizing between 1 and 8% of the mycorrhizal root tips. Two of the five sites supported several tomentelloid species. Tomentelloid fungi appear to be relatively common ectomycorrhizal symbionts with a wide distribution in Swedish coniferous forests. The results are in accordance with accumulating data that fungal species which lack conspicuous sporocarps may be of considerable importance in EM communities.  相似文献   

7.
One hundred and thirty-eight scat (faecal) samples from 17 mammal species native to forests of northeastern Queensland were examined for the presence of spores of both ectomycorrhizal and arbuscular mycorrhizal fungi. Spores of mycorrhizal fungi were found in 57 percent of scat samples representing 12 animal species (Aepyprymnus rufescens, Antechinus godmani, Bettongia tropica, Hypsiprymnodon moschatus, Isoodon macrourus, Melomys ceruinipes, Perameles nasuta, Rattus fuscipes, R. tunneyi, Thylogale stigmatica, Trichourur uulperula, Uromys caudimaculatus). Spores were absent in scats of Antechinus stuartii, Dasyurus hallucatus, Dendrolagus lumholtzi, Petaurus australis and Mesembriomys gouldii. Spores of ectomycorrhizal fungi occurred in 38 percent of scats, and all but one of these samples were from Eucalyptus-dominated sclerophyll forests. Based on the frequency and abundance of spores in scats, five mammals were considered active consumers of hypogeous mycorrhizal sporocarps in sclerophyll forests (A. rufescens, B. tropica, I. macrourus, P. nasuta, and U. caudimaculatus). Individual scats of these animals generally contained a range of distinctive spore types. Spores of arbuscular mycorrhizal fungi were found in low abundance in almost 40 percent of scat samples collected, from both sclerophyll forest and rainforest habitats. We suggest that the majoriry of these spores were acquired incidentally through ingestion of soil during foraging activities on the forest floor. Glasshouse inoculation experiments in which seedlings of Eucalyptus grandis and Sorghum bicolor were inoculated with scat material from several species of mammal demonstrated that the spores of ectomycorrhizal and arbuscular mycorrhizal fungi retained some viability and colonized the roots of host-plant seedlings. Insufficient information is known of the ecology of mycorrhizal fungi in Australia's tropical forests to speculate as to the implications of these findings for forest conservation and rehabilitation.  相似文献   

8.
《植物生态学报》2017,41(10):1113
Nearly all tree species develop symbiotic relationships with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi to acquire nutrients from soils, and hence influence soil carbon (C) and nitrogen (N) cycles in terrestrial ecosystems. It is crucial to understand the differences in soil C and N cycles between AM and EM forests and the underlying mechanisms. In this review, we first compared the differences in the soil C and N cycles between AM and EM forests, and synthesized the underlying mechanisms from perspectives of the inputs, stabilization, and outputs of soil C and N in forest ecosystems. We also compared the responses of soil C and N cycles between AM and EM forests to global changes. In this field, one major research priority is comparing the structure and function (including the soil C and N cycles) between AM and EM forest ecosystems to provide theoretical basis and solid data for improving forest productivity and ecosystem services. The second research focus is deepening the understanding of the effects of interactions between aboveground litter and belowground mycorrhiza and free-living microbes on soil C and N cycles to reveal the potential underlying mechanisms in forests with different mycorrhizal symbioses. Third, the research methodology and new techniques need refining and applying to explicitly focus on scaling up the fine-scale measurements to better expound and predict the C and N cycles in forest ecosystems. Finally, more studies on the stability of soil organic matter among different mycorrhizal forests are needed to precisely assess responses of the structure and function of forest ecosystems to global changes.  相似文献   

9.
Multiple co-dominant genetic markers from single spores of the arbuscular mycorrhizal (AM) fungi Glomus mosseae, Glomus caledonium, and Glomus geosporum were amplified by nested multiplex PCR using a combination of primers for simultaneous amplification of five loci in one PCR. Subsequently, each marker was amplified separately in nested PCR using specific primers. Polymorphic loci within the three putative single copy genes GmFOX2, GmTOR2, and GmGIN1 were characterized by sequencing and single strand conformation polymorphisms (SSCP). Primers specific for the LSU rDNA D2 region were included in the multiplex PCR to ensure correct identification of the Glomus spp. spores. Single AM fungal spores were characterized as multilocus genotypes by combining alleles of each amplified locus. Only one copy of each putative single copy gene could be amplified from each spore, indicating that spores are homokaryotic. All isolates of G. mosseae had unique genotypes. The amplification of multiple co-dominant genetic markers from single spores by the nested multiplex PCR approach provides an important tool for future studies of AM fungi population genetics and evolution.  相似文献   

10.
Fungi combine sexual reproduction and clonal propagation. The balance between these two reproductive modes affects establishment dynamics, and ultimately the evolutionary potential of populations. The pattern of colonization was studied in two species of ectomycorrhizal fungi: Tricholoma populinum and Tricholoma scalpturatum. The former is considered to be a host specialist whereas T. scalpturatum is a generalist taxon. Fruit bodies of both basidiomycete species were mapped and collected over several years from a black poplar (Populus nigra) stand, at two different sites. Multilocus genotypes (= genets) were identified based on the analysis of random amplified polymorphic DNA (RAPD) patterns, inter-simple sequence repeat (ISSR) patterns and restriction fragment length polymorphisms (RFLPs) in the ribosomal DNA intergenic spacer (rDNA IGS). The genetic analyses revealed differences in local population dynamics between the two species. Tricholoma scalpturatum tended to capture new space through sexual spores whereas T. populinum did this by clonal growth, suggesting trade-offs in allocation of resources at the genet level. Genet numbers and sizes strongly differ between the two study sites, perhaps as a result of abiotic disturbance on mycelial establishment and genet behaviour.  相似文献   

11.
The ecological importance of ectomycorrhizal (EM) fungi in tropical ecosystems is increasingly recognized, but few studies have used molecular methods to examine EM fungal communities in tropical forests. The diversity and composition of the EM community on Quercus crassifolia in a tropical montane cloud forest in southern Mexico were characterized using DNA sequencing of single root tips. Individual root tips commonly harbored multiple fungal species that resulted in mixed polymerase chain reaction (PCR) products. By cloning and performing gel extractions on mixed PCR samples, we identified two or more EM fungi on 26% of the root tips. When non-EM fungi were considered, this figure increased to 31% of root tips. A total of 44 EM taxa and nine non-EM taxa were detected on roots from 21 soil cores (104 root tips). Taxa in the families Russulaceae, Cortinariaceae, Inocybaceae, and Thelephoraceae were frequent. This is the first study to characterize the belowground EM community in a tropical montane cloud forest. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Biogeographical patterns and large-scale genetic structure have been little studied in ectomycorrhizal (EM) fungi, despite the ecological and economic importance of EM symbioses. We coupled population genetics and phylogenetic approaches to understand spatial structure in fungal populations on a continental scale. Using nine microsatellite markers, we characterized gene flow among 16 populations of the widespread EM basidiomycete Laccaria amethystina over Europe (i.e. over 2900 km). We also widened our scope to two additional populations from Japan (10(4) km away) and compared them with European populations through microsatellite markers and multilocus phylogenies, using three nuclear genes (NAR, G6PD and ribosomal DNA) and two mitochondrial ribosomal genes. European L. amethystina populations displayed limited differentiation (average F(ST) = 0.041) and very weak isolation by distance (IBD). This panmictic European pattern may result from effective aerial dispersal of spores, high genetic diversity in populations and mutualistic interactions with multiple hosts that all facilitate migration. The multilocus phylogeny based on nuclear genes confirmed that Japanese and European specimens were closely related but clustered on a geographical basis. By using microsatellite markers, we found that Japanese populations were strongly differentiated from the European populations (F(ST) = 0.416), more than expected by extrapolating the European pattern of IBD. Population structure analyses clearly separated the populations into two clusters, i.e. European and Japanese clusters. We discuss the possibility of IBD in a continuous population (considering some evidence for a ring species over the Northern Hemisphere) vs. an allopatric speciation over Eurasia, making L. amethystina a promising model of intercontinental species for future studies.  相似文献   

13.
外生菌根菌与森林树木的相互关系   总被引:25,自引:2,他引:23  
生态系统的每个过程都伴随着各种微生物的活动,其中最重要的功能群之一是菌根真菌(菌根菌)。一般认为,菌根菌是自然界多数植物生存最基本的组成部分,陆地上约90%以上的高等植物都具有菌根菌。这些菌类的菌丝体与植物根系结合形成菌根,使植物生长成为可能,使不同种类植物的根系联在一起。根据菌根菌入侵植物根系的方式及菌根的形态特征,菌根可分为外生菌根、内生菌根和内外生菌根3组共7种类型。外生菌根主要出现在松科、桦木科、壳斗科等树种的森林生态系统中,在根系表面形成菌丝鞘,部分菌丝进入根系皮层细胞间隙形成哈氏网表面。菌根菌剂在森林经营中得到广泛地应用。外生菌根菌对森林树木的作用可归纳为:1)促进造林或育苗成活与生长;2)提高森林生态系统中植物的多样性、稳定性和生产力;3)对森林生态系统的综合效应,主要表现在增加植物一土壤联结,改善土壤结构,促进土壤微生物,增强植物器官的功能;4)抗拮植物根部病害病原菌等。树木与菌根菌相互关系研究主要包括:1)菌根共生的机理;2)菌根菌在退化森林生态系统恢复与改造中的作用;3)菌根菌的分布格局与森林生态系统服务功能的关系;4)菌根菌对森林生态系统的综合效应,如菌根菌与森林植物群落结构、物种多样性以及森林系统稳定性和生产力的研究。  相似文献   

14.
Liang Y  Guo LD  Ma KP 《Mycorrhiza》2005,15(2):137-142
The population genetic structure of the late-stage fungus Amanita manginiana in a natural forest in Dujiangyan, southwest China was examined over two years using inter-simple sequence repeat (ISSR) markers. Seven ISSR primers were used and 170 bands were obtained in this population: 134/160 and 135/153 bands were polymorphic for sporocarps of 2001 and 2002, respectively. Each sporocarp represented a single genet in 2001 and 2002, and no identical genets were found between the two years. The results of genetic similarity comparison, using unweighted pair group method with arithmetic means, and analysis of molecular variance, indicated that although genetic variances were mainly within individuals of the same year the genetic variance between years was statistically significant (P<0.001). Relationships between genetic similarity and spatial distance of pairwise sporocarps were also found to be different in the two years. The differences in genetic structure and genetic similarity between individuals of the two years implied that the sporocarps were not likely to be derived from continuous generations, i.e., the sporocarps collected in 2002 were not developed from sexual spores dispersed by sporocarps of 2001. We suggest that the life-cycle traits of ectomycorrhizal (ECM) fungi should be considered in genetic studies on ECM fungal populations.  相似文献   

15.
Intraspecific and interspecific genetic variation was studied among arbuscular mycorrhizal fungi. DNA was extracted from single spores and variation was analysed by AFLP (Amplified Fragment Length Polymorphism). The patterns of amplified fragments revealed substantial genetic variation between spores from the same isolates. Possible recombination in the fungi was studied by comparing the obtained data with data generated by artificial recombination of the data sets. No evidence for recombination was found by the analysis, suggesting that the fungi reproduce clonally. The AFLP technique generated a large number of fragments, and the potential for using the technique in population genetic studies of these important unculturable biotrophic fungi is discussed.  相似文献   

16.
Background and Aims Multi-stemmed trees (tree clusters) in Nothofagus pumilio, a dominant tree species in Patagonia, are very uncommon and are restricted to the edge of second-growth forests following human-provoked fires. No vegetative reproduction has been reported so far. The genetic structure of multi-stemmed trees of this species was investigated and it was hypothesized that genets within a cluster were more closely related than average in the population. Methods Fifteen clusters (composed of at least three purported stems) and 15 single trees were sampled at the edge of a second-growth forest and genotyped using two amplified fragment length polymorphism (AFLP) primer pairs. We obtained 119 polymorphic markers that allowed clonality to be determined, together with sibship structure and relatedness among samples. Key Results Clonality was detected in seven clusters but all clusters had at least two different genotypes. Full sibs were found exclusively within clusters and in all clusters. Within a cluster, stems that were not identified as full sibs were often half sibs. Relatedness values for the full sibs and half sibs were higher than the theoretical values of 0·5 and 0·25 but the relatedness between clusters was very low. Conclusions Tree clusters that are merged at the edge of the second-growth forest of N. pumilio are composed of stems of the same genotype and of other genotypes that are highly related (but not always). It is suggested that this peculiar genetic structure results from a combination of several causes, including selection for merging of related individuals.  相似文献   

17.
Abstract: Tropical and subtropical forests once covered large areas of Central and South America. An important member of forests of the southern hemisphere is the genus Araucaria. Because of clear cutting only small remnants of Araucaria angustifolia forests still exist in Southern Brazil. Attempts at reforestation have had only limited success because of lack of knowledge about the environmental requirements of this species. This is especially true with respect to the root/fungus symbiosis (mycorrhiza) which is necessary for enhanced water and nutrient uptake and present in more than 90 % of land plants. Analysis of the root systems of Araucaria trees from forest and grassland (campo) sites revealed mycorrhizal structures (appressoria, penetration and coiled hyphae, vesicles, arbuscules, spores) which are characteristic for the arbuscular mycorrhiza (AM) type. The spores of AM fungi at both sites - forest and campo - were identified. The biodiversity at the forest site was much higher, with 13 species, whereas only 6 different species could be identified at the campo site. Glomus and Acaulospora were the only genera present at the campo. The forest, however, also contained spores of Entrophospora and Scutellospora. In addition to the greater biodiversity, the spore number in soil as well as the percent mycorrhizal colonization in roots were significantly higher at the forest site than at the campo site. Because of the low frequency of hyphal coils and the dominating intercellular growth of hyphae, these mycorrhizas can be classified as an Arum -type, which is the first report of this kind in gymnosperms.  相似文献   

18.
Patterns and regulation of mycorrhizal plant and fungal diversity   总被引:20,自引:1,他引:19  
The diversity of mycorrhizal fungi does not follow patterns of plant diversity, and the type of mycorrhiza may regulate plant species diversity. For instance, coniferous forests of northern latitudes may have more than 1000 species of ectomycorrhizal (EM) fungi where only a few ectomycorrhizal plant species dominate, but there are fewer than 25 species of arbuscular mycorrhizal (AM) fungi in tropical deciduous forest in Mexico with 1000 plant species. AM and EM fungi are distributed according to biome, with AM fungi predominant in arid and semiarid biomes, and EM fungi predominant in mesic biomes. In addition, AM fungi tend to be more abundant in soils of low organic matter, perhaps explaining their predominance in moist tropical forest, and EM fungi generally occur in soils with higher surface organic matter.EM fungi are relatively selective of host plant species, while AM tend to be generalists. Similar morphotypes of AM fungi collected from different sites confer different physiological benefits to the same plant species. While the EM fungi have taxonomic diversity, the AM fungi must have physiological diversity for individual species to be so widespread, as supported by existing studies. The environmental adaptations of mycorrhizal fungi are often thought to be determined by their host plant, but we suggest that the physiology and genetics of the fungi themselves, along with their responses to the plant and the environment, regulates their diversity. We observed that one AM plant species,Artemisia tridentata, was associated with different fungal species across its range, indicating that the fungi can respond to the environment directly and must not do so indirectly via the host. Different species of fungi were also active during different times of the growing season on the same host, again suggesting a direct response to the environment.These patterns suggest that even within a single functional group of microorganisms, mycorrhizal fungi, considerable diversity exists. A number of researchers have expressed the concept of functional redundancy within functional groups of microorganisms, implying that the loss of a few species would not be detectable in ecosystem functioning. However, there may be high functional diversity of AM fungi within and across habitats, and high species diversity as well for EM fungi. If one species of mycorrhizal fungus becomes extinct in a habitat, field experimental data on AM fungi suggest there may be significant shifts in how plants acquire resources and grown in that habitat.  相似文献   

19.
To study the impact of disturbance by mowing on clonal variation, we compared the genetic structure of Ranunculus ficaria (Ranunculaceae) in meadows and forests located in southeast Germany. We applied random amplified polymorphic DNA (RAPD) analysis to investigate the clonal and genetic diversity and analysed a total of 117 samples from three study plots in each habitat type. Polymerase chain reaction with six primers resulted in 57 fragments. Clonal diversity differed clearly between the two analysed habitat types and was significantly higher in the study plots from meadows than in those from forests. The mean percentage of distinguishable genotypes (PD) was 0.80 in meadow plots and 0.36 in forest plots, and the detected genets were smaller in meadow plots than in forest plots. Mean genetic diversity measured as percentage of polymorphic bands, Shannon’s information index and Nei’s gene diversity was also higher in meadows (44.4, 0.22 and 0.14) than in forests (25.1, 0.09 and 0.05). The higher level of clonal diversity in meadow plots is most likely due to the effects of disturbance by mowing, which increases the dispersal of bulbils and promotes the establishment of new plants in meadows compared to forests.  相似文献   

20.
Environmental disturbances define the diversity and assemblage of species, affecting the functioning of ecosystems. Fire is a major disturbance of Mediterranean pine forests. Pines are highly dependent on the ectomycorrhizal (EM) fungal symbiosis, which is critical for tree recruitment under primary succession. To determine the effects of time since fire on the structure and recovery of EM fungal communities, we surveyed the young Pinus pinaster regenerate in three sites differing in the elapsed time after the last fire event. Pine roots were collected, and EM fungi characterized by sequencing the internal transcribed spacer (ITS) and the large subunit (LSU) regions of the nuclear ribosomal (nr)-DNA. The effects of the elapsed time after fire on the EM community structure (richness, presence/absence of fungi, phylogenetic diversity) and on soil properties were analysed. Fungal richness decreased with the elapsed time since the fire; although, the phylogenetic diversity of the EM community increased. Soil properties were different depending on the elapsed time after fire and particularly, the organic matter, carbon-to-nitrogen (C/N) ratio, nitrogen and iron significantly correlated with the assemblage of fungal species. Ascomycetes, particularly Tuberaceae and Pezizales, were significantly over-represented on saplings in the burned site. On seedlings, a significant over-representation of Rhizopogonaceae and Atheliaceae was observed in the most recently burned site, while other fungi (i.e. Cortinariaceae) were significantly under-represented. Our results are consistent with the hypothesis that fire can act as a selective agent by printing a phylogenetic signal on the EM fungal communities associated with naturally regenerated pines, pointing out to some groups as potential fire-adapted fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号