首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary ventilation (V) and alveolar gas composition (PACO2, PAO2) were studied in 12 healthy men who performed gradual muscular work under conditions of controlled hypercapnia, hypoxia, hyperoxia or their combinations. The respiratory response was estimated by absolute values of ventilation at the given PACO2 value and by its rise by 1 mm Hg of increased PACO2 (delta V/delta PACO2) under rest and under transitional and steady-state exercise. The exercise on-switch was accompanied by displacement to the top and an increased slope of the response curve (delta V/delta PACO2) not related to the work load. These changes suggest multiplicative interaction of the neurogenic and hypercapnic drives in the load switch-on. During steady-state exercise an important role of the hypoxic drive was revealed: hypoxemia induced a shift of the delta V/delta PACO2 response curve to a higher level, especially with the great work load. Thus the positive interaction between the hypercapnic and hypoxic respiratory drive augments with muscular exercise.  相似文献   

2.
Control of ventilation in elite synchronized swimmers   总被引:1,自引:0,他引:1  
Synchronized swimmers perform strenuous underwater exercise during prolonged breath holds. To investigate the role of the control of ventilation and lung volumes in these athletes, we studied the 10 members of the National Synchronized Swim Team including an olympic gold medalist and 10 age-matched controls. We evaluated static pulmonary function, hypoxic and hypercapnic ventilatory drives, and normoxic and hyperoxic breath holding. Synchronized swimmers had an increased total lung capacity and vital capacity compared with controls (P less than 0.005). The hypoxic ventilatory response (expressed as the hyperbolic shape parameter A) was lower in the synchronized swimmers than controls with a mean value of 29.2 +/- 2.6 (SE) and 65.6 +/- 7.1, respectively (P less than 0.001). The hypercapnic ventilatory response [expressed as S, minute ventilation (1/min)/alveolar CO2 partial pressure (Torr)] was no different between synchronized swimmers and controls. Breath-hold duration during normoxia was greater in the synchronized swimmers, with a mean value of 108.6 +/- 4.8 (SE) vs. 68.03 +/- 8.1 s in the controls (P less than 0.001). No difference was seen in hyperoxic breath-hold times between groups. During breath holding synchronized swimmers demonstrated marked apneic bradycardia expressed as either absolute or heart rate change from basal heart rate as opposed to the controls, in whom heart rate increased during breath holds. Therefore the results show that elite synchronized swimmers have increased lung volumes, blunted hypoxic ventilatory responses, and a marked apneic bradycardia that may provide physiological characteristics that offer a competitive advantage for championship performance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.

Background

We tested the hypothesis that ventilatory drive in hypoxia and hypercapnia is inversely correlated with the number of hypopneas and obstructive apneas per hour of sleep (obstructive apnea hypopnea index, OAHI) in children.

Methods

Fifty children, 6 to 12 years of age were studied. Participants had an in-home unattended polysomnogram to compute the OAHI. We subsequently estimated ventilatory drive in normoxia, at two levels of isocapnic hypoxia, and at three levels of hyperoxic hypercapnia in each subject. Experiments were done during wakefulness, and the mouth occlusion pressure measured 0.1 seconds after inspiratory onset (P0.1) was measured in all conditions. The slope of the relation between P0.1 and the partial pressure of end-tidal O2 or CO2 (PETO2 and PETCO2) served as the index of hypoxic or hypercapnic ventilatory drive.

Results

Hypoxic ventilatory drive correlated inversely with OAHI (r = -0.31, P = 0.041), but the hypercapnic ventilatory drive did not (r = -0.19, P = 0.27). We also found that the resting PETCO2 was significantly and positively correlated with the OAHI, suggesting that high OAHI values were associated with resting CO2 retention.

Conclusions

In awake children the OAHI correlates inversely with the hypoxic ventilatory drive and positively with the resting PETCO2. Whether or not diminished hypoxic drive or resting CO2 retention while awake can explain the severity of sleep-disordered breathing in this population is uncertain, but a reduced hypoxic ventilatory drive and resting CO2 retention are associated with sleep-disordered breathing in 6–12 year old children.  相似文献   

4.
目的:研究慢性低氧高二氧化碳对大鼠肺动脉环氧酶-2(COX-2)基因表达的影响。方法:将SD大鼠分为正常对照组(A组),4周低O2高CO2组(B组)。采用免疫组化、原位杂交、图像分析等方法,观察两组大鼠肺动脉平均压(mPAP)、颈动脉平均压(mCAP)、右心室/(左心室+室间隔)重量比[RV/(LV+S)]、肺细小动脉显微结构及肺细小动脉COX-2活性及基因表达变化。结果:①B组mPAP、Rv/(LV+S)显著高于A组(P〈0,01)。两组间mCAP比较差异无显著性(P〉0.05)。②光镜下正常对照组大鼠肺细小动脉内弹力板自然弯曲,平滑肌层未见明显增厚,管壁均匀一致,而低O2高CO2组内弹力板扭曲,中膜平滑肌细胞增生,管腔明显狭窄。③免疫组化、原位杂交发现B组肺细小动脉COX-2及COX-2mRNA平均吸光度值明显高于A组(P〈0.01)且与mPAP呈负相关(P〈0.01)。结论:环氧酶-2基因表达变化可能在慢性低氧高二氧化碳肺动脉高压形成中起调控作用。  相似文献   

5.
The purpose of this study was to investigate the role of peripheral chemoreceptor activity on the hypoxic and hypercapnic ventilatory drives in rabbits with induced hypothyroidism. Experiments were carried out in control and hypothyroid rabbits. Hypothyroidism was induced by an administration of an iodide-blocker, methimazole in food (75 mg/100 g food) for ten weeks. At the end of the tenth week, triiodothyronine (T3) and thyroxine (T4) levels significantly decreased (P<0.001) while thyroid stimulating hormone (TSH) increased (P<0.001). Tidal volume (VT), respiratory frequency (f/min), ventilation minute volume (VE) and systemic arterial blood pressure (BP) were recorded during the breathing of the normoxic, hypoxic (8% O2-92% N2) and hypercapnic (6% CO2-Air) gas mixtures, in the anaesthetised rabbits of both groups. At the end of each experimental phase, PaO2, PaCO2, and pHa were measured. The same experimental procedure was repeated after peripheral chemoreceptor denervation in both groups. VT significantly decreased in some of the rabbits with hypothyroidism during the breathing of the hypoxic gas mixture (nonresponsive subgroup) (P<0.05). After chemodenervation, a decrease in VT was observed in this nonresponsive subgroup during normoxia (P<0.05). The percent decrease in VT in nonresponsive subgroup of hypothyroid rabbits after chemodenervation was lower than that of the chemodenervated control animals (P<0.01). When these rabbits with hypothyroidism were allowed to breath the hypercapnic gas mixtures, increases in VT and VE were not significant. In conclusion, although there is a decrease in peripheral chemoreceptor activity in hypothyroidism, it does not seem to be the only cause of decrease in ventilatory drive during hypoxia and hypercapnia.  相似文献   

6.
We measured the isocapnic hypoxic ventilatory response and the hypercapnic ventilatory response by using rebreathing techniques in five normal subjects (ages 37-47 yr) before, during, and after 16 days of exposure to microgravity (microG). Control measurements were performed with the subjects in the standing and supine postures. In both microG and in the supine position, the hypoxic ventilatory response, as measured from the slope of ventilation against arterial O(2) saturation, was greatly reduced, being only 46 +/- 10% (microG) and 52 +/- 11% (supine) of that measured standing (P < 0.01). During the hypercapnic ventilatory response test, the ventilation at a PCO(2) of 60 Torr was not significantly different in microG (101 +/- 5%) and the supine position (89 +/- 3%) from that measured standing. Inspiratory occlusion pressures agreed with these results. The findings can be explained by inhibition of the hypoxic but not hypercapnic drive, possibly as a result of an increase in blood pressure in carotid baroreceptors in microG and the supine position.  相似文献   

7.
The abundance of neuropeptide Y (NPY)-, vasoactive intestinal polypeptide (VIP)-, substance P (SP)-, and calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers in the carotid body was examined in chronically hypercapnic hypoxic rats (10% O2 and 6-7% CO2 for 3 months), and the distribution and abundance of these four peptidergic fibers were compared with those of previously reported hypocapnic- and isocapnic hypoxic carotid bodies to evaluate the effect of arterial CO2 tension. The vasculature in the carotid body of chronically hypercapnic hypoxic rats was found to be enlarged in comparison with that of normoxic control rats, but the rate of vascular enlargement was smaller than that in the previously reported hypocapnic- and isocapnic hypoxic carotid bodies. In the chronically hypercapnic hypoxic carotid body, the density per unit area of parenchymal NPY fibers was significantly increased, and that of VIP fibers was unchanged, although the density of NPY and VIP fibers in the previously reportetd chronically hypocapnic and isocapnic hypoxic carotid bodies was opposite to that in hypercapnic hypoxia as observed in this study. The density of SP and CGRP fibers was decreased. These results along with previous reports suggest that different levels of arterial CO2 tension change the peptidergic innervation in the carotid body during chronically hypoxic exposure, and altered peptidergic innervation of the chronically hypercapnic hypoxic carotid body is one feature of hypoxic adaptation.  相似文献   

8.
Baseline external respiration and gas exchange values, as well as ventilatory thresholds and sensitivity to the O2 and CO2 stimuli in hypoxic and hypercapnic tests, were measured 1 h before and after a session of intermittent normobaric hypoxia (INH) (six repetitions with a 5-min inhalation of a gas mixture (10% O2) alternating with a 3-min inhalation of atmospheric air). After an INH session, the background CO2 level in the lungs increased by 10%. In the hypercapnic test, the actuation threshold of the ventilatory response did not change, whereas ventilatory sensitivity increased. The maximal pulmonary ventilation and the corresponding critical CO2 level in the lungs also increased at the end of the test. In the hypoxic test, the ventilatory response occurred at a decreased level of blood oxygenation after an INH session, the pulmonary ventilation level being decreased and the CO2 content in the lungs being increased at the end of the test. The data obtained evidence the maintenance of changed gas homeostasis for 1 h after an INH session. In this process, control of respiration was effected, with the hypoxic drive being weakened and the peripheral chemoreceptor sensitivity being decreased. The hypercapnic drive also increased, which may be determined by readjustment in the central mechanisms of respiratory regulation.  相似文献   

9.
Intracellular Ca2+, K+, Cl-, and NO3- activities were measured with ion-selective microelectrodes in the liverwort Conocephalum conicum L. at rest, during dark/light changes, and in the course of action potentials triggered by light or electrical stimuli. The average free cytosolic Ca2+ concentration was 231 [plus or minus] 65 nM. We did not observe any light-dependent changes of the free cytosolic Ca2+ concentration as long as no action potential was triggered. During action potentials, on average a 2-fold increase of the free cytoplasmic Ca2+ concentration was recorded. Intracellular K+ activity was 76 [plus or minus] 10 mM. It did not depend on K+ concentration changes in the bath solution between 0.1 and 10 mM. The average equilibrium potential for K+ in the standard medium containing 1 mM K+ was -110 mV, which differed significantly from the resting potential of -151 [plus or minus] 2 mV. During action potentials, either a slight decrease or no changes in intracellular K+ activity were recorded. The average Cl- activity was 7.4 [plus or minus] 0.2 mM in the cytoplasm and 43.5 [plus or minus] 7 mM in the vacuole. The activities of NO3- were 0.63 [plus or minus] 0.05 mM in the cytoplasm and 3.0 [plus or minus] 0.3 mM in the vacuole. For both anions the vacuolar activity was 5 to 6 times higher than the cytoplasmic activity. After the light was switched off both the Cl- and the NO3- activity showed either no change or a slight increase. Illumination caused a gradual return to previous values or no change. During action potentials a slight decrease of intracellular Cl- activity was recorded. It was concluded that in Conocephalum, as in characean cells, chloride channels are involved in the depolarization phase of the action potentials. We discuss a model for the ion fluxes during an action potential in Conocephalum.  相似文献   

10.
Leptin deficiency in ob/ob mice produces marked depression of the hypercapnic ventilatory response, particularly during sleep. We now extend our previous findings to determine whether 1) leptin deficiency affects the hypoxic ventilatory response and 2) blockade of the downstream excitatory actions of leptin on melanocortin 4 receptors or inhibitory actions on neuropeptide Y (NPY) pathways has an impact on hypercapnic and hypoxic sensitivity. We have found that leptin-deficient ob/ob mice have the same hypoxic ventilatory response as weight-matched wild-type obese mice. There were no differences in the hypoxic sensitivity between agouti yellow mice and weight-matched controls, or NPY-deficient mice and wild-type littermates. Agouti yellow mice, with blocked melanocortin pathways, exhibited a significant depression of the hypercapnic sensitivity compared with weight-matched wild-type controls during non-rapid eye movement sleep (5.8 +/- 0.7 vs. 8.9 +/- 0.7 ml x min(-1) x %CO(2)(-1), P < 0.01), but not during wakefulness. NPY-deficient transgenic mice exhibited a small increase in the hypercapnic ventilatory response compared with wild-type littermates, but this was only present during wakefulness. We conclude that interruption of leptin pathways does not affect hypoxic sensitivity during sleep and wakefulness but that melanocortin 4 blockade is associated with depressed hypercapnic sensitivity in non-rapid eye movement sleep.  相似文献   

11.
Airway anesthesia causes an increase in ventilation (VE) during hypercapnia. However, it is unclear if that is related to an effect of the anesthesia on all forms of stimulated V.E or just hypercapnic VE. After airway anesthesia, an increase in hypoxic VE would suggest the former, whereas absence of an increase would suggest the latter. Thus we compared VE before and after airway anesthesia during hypoxic VE. Normal subjects performed hypoxic rebreathing plus additional periods of sham hyperoxic rebreathing. There was no effect of airway anesthesia on the slope of the line relating VE and arterial O2 saturation. However, there was an upward shift in the line, attributable to an effect of anesthesia on hypercapnic VE present during rebreathing. Additional normal subjects performed eucapnic hypoxic breathing, and there was no effect of airway anesthesia on VE. We conclude that airway anesthesia has little or no effect on hypoxic VE. To date, only hypercapnic VE has been shown to be increased after airway anesthesia.  相似文献   

12.
During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco(2) levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO(2)-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po(2) = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH.  相似文献   

13.
Somatomedin-like activity was measured in the plasma of growing lambs using the porcine costal cartilage disk assay. Plasma concentrations were found to be high initially at 2 days of age (mean potency 1.02 plus or minus 0.13 (SEM) units/ml, n = 4) declined significantly by 8 days of age (mean potency 0.65 plus or minus 0.04 units/ml, n = 5, P less than 0.01, analysis of variance). Thereafter somatomedin-like activity declined slowly to reach its lowest concentration at 146 days of age (mean potency 0.61 plus or minus 0.04 units/ml, n = 5) then it rose slowly until 288 days of age (mean potency 0.61 +/- 0.04 units/ml, n = 5. These changes in somatomedin-like activity were accompanied by high initial plasma concentrations of growth hormone (24.8 plus or minus 4.8 ng/ml, n = 5) which declined under 188 days of age (2.8 plus or minus 0.04 ng/ml, n- 5) and then rose slightly until 288 days of age (13.8 plus or minus 9 ng/ml, n=5). Plasma prolactin concentrations showed a different pattern being low initially (47.8 plus or minus 8.7 ng/ml, n = 5) rising until 146 days of age (203 plus or minus 16 ng/ml, n = 5) and then declining to low value for the rest of the experiment. The relationships between these factors is not clear but somatomedin-like activity shows a pattern in the lamb which is highest when growth is faster (i.e. in the young lamb).  相似文献   

14.
Arterial desaturation in athletes during intense exercise has been reported by several authors, yet the etiology of this phenomenon remains obscure. Inadequate pulmonary ventilation, due to a blunted respiratory drive, has been implicated as a factor. To investigate the relationship between the ventilatory response to hypoxia, exercise ventilation, and arterial desaturation, 12 healthy male subjects [age, 23.8 +/- 3.6 yr; height, 181.6 +/- 5.6 cm; weight, 73.7 +/- 6.2 kg; and maximal O2 uptake (VO2max), 63.0 +/- 2.2 ml.kg-1 min-1] performed a 5-min treadmill test at 100% of VO2max, during which arterial blood samples and ventilatory data were collected every 15 s. Alveolar PO2 (PAO2) was determined using the ideal gas equation. On a separate occasion the ventilatory response to isocapnic hypoxia was measured. Arterial PO2 decreased by an average of 29 Torr during the test, associated with arterial desaturation [arterial O2 saturation (SaO2) 92.0%]. PAO2 was maintained; however, alveolar-arterial gas pressure difference increased progressively to greater than 40 Torr. Minimal hypocapnia was observed, despite marked metabolic acidosis. There was no significant correlation observed between hypoxic drives and ventilation-to-O2 uptake ratio or SaO2 (r = 0.1 and 0.06, respectively, P = NS). These data support the conclusions that hypoxic drives are not related to maximal exercise ventilation or to the development of arterial desaturation during maximal exercise.  相似文献   

15.
Two methods are described for the measurement of uterine blood flow in the pregnant rabbit. The first involves the use of a Parks ultrasonic Doppler probe placed over the exposed uterine artery. The second method uses a drop counter system connected between the uterine and jugular veins. The Doppler flowmeter was used to measure uterine arterial blood flow in twenty rabbits on Day 28 or 29 of pregnancy. No significant difference was observed between blood flow on these 2 days and the absolute blood flow to one horn (plus or minus S. E.) was found to be 16.8 plus or minus 1.4 ml/min, equivalent to 27.1 plus or minus 1.8 ml/100 g tissue/min. Using the drop recorder technique, the flow to one uterine horn in eleven rabbits on Day 27 or 28 of pregnancy was 12.5 plus or minus 1.9 ml/min, equivalent to 23.6 plus or minus 3.2 ml/100 g tissue/min. The pressure-flow relationship in the uterine vascular bed was studied using the Doppler flowmeter and graded mechanical occlusion of the arterial supply. Within the range of pressures studied, the flow was found to be linearly related to the arterio-venous pressure difference. This suggests that the uterine vascular bed was fully dilated under the conditions of study.  相似文献   

16.
Normal values were obtained for blood serum PBI, T3 index. T4, and cholesterol in a colony of pygmy goats (n equal to 55) of mixed sex and age. Serum PBI values averaged 8.1 plus or minus 1.2 mug/dl with no significant sex differences. The mean T3 index and T4 value were 1.1 plus or minus 0.1 and 7.2 plus or minus 1.1 mug/dl, respectively, with no sex differences. The mean serum cholesterol value was 90.0 mg/dl, with sex differences apparent. Serum cholesterol averaged 84.9 mg/dl (n equal to 44) for females and was significantly higher in intact males (97.4 mg/dl; n=8) and significantly lower in castrate males 69.2; n=6. There was a consistent and significant increase in cholesterol values with age in females, an unexplained phenomenon also observed in humans. There was no evidence of thyroid malfunction in the animals studied.  相似文献   

17.
The effect of hypercapnic ventilatory response was examined in anaesthetized spontaneously breathing rats by using rebreathing techniques both at supine and -30 degrees head-down tilt positions. No significant differences were found in the minute ventilation response between the supine and head-down positions during hypercapnic stimulations. In contrast, we found that hypercapnia-stimulated breathing affected the relationship between deltaPoes and deltaP(ET), CO2. This study demonstrates that higher peak deltaPoes was developed in order to maintain the same ventilation in the supine and head-tilt position. The higher deltaPoes/deltaP(ET), CO2 head-down ratio than the supine was a result of increased airflow impedance of the total respiratory system while head-down. It is concluded that ventilation at head-down is regulated in such a way as to maintain the pH and Paco, despite mechanical loading imposed by the environment. Hence, during hypercapnic stimulation the ventilatory response in head-down position is shaped by interaction of chemical drives and mechanical afferent information arising.  相似文献   

18.
The effects of hypercapnic acidosis and hypoxia on intracellular Ca(2+) concentration ([Ca(2+)](i)) were determined with Indo 1 in enzymatically isolated single type I cells from neonatal rat carotid bodies. Type I cells responded to graded hypoxic stimuli with graded [Ca(2+)](i) rises. The percentage of cells responding was also dependent on the severity of the hypoxic stimulus. Raising CO(2) from 5 to 10 or 20% elicited a significant increase in [Ca(2+)](i) in the same cells as those that responded to hypoxia. Thus both stimuli can be sensed by each individual cell. When combinations of hypoxic and acidic stimuli were given simultaneously, the responses were invariably greater than the response to either stimulus given alone. Indeed, in most cases, the response to hypercapnia was slightly potentiated by hypoxia. These data provide the first evidence that the classic synergy between hypoxic and hypercapnic stimuli observed in the intact carotid body may, in part, be an inherent property of the type I cell.  相似文献   

19.
Hypoxia elicits catecholamine (CA) secretion from the adrenal medulla (AM) in perinatal animals by acting directly on chromaffin cells. However, whether innervation of the AM, which in the rat occurs in the second postnatal week, suppresses this direct hypoxic response is the subject of debate. Opioid peptides have been proposed as mediators of this suppression. To resolve these controversies, we have compared CA-secretory responses with high external concentrations of K+ ([K+]e) and hypoxia in the AM of neonatal (1- to 2-day-old) and juvenile (14- or 15- and 30-day-old) rats subjected to superfusion in vitro. In addition, we studied the effect of hypercapnic acidosis on the CA-secretory responses in the AM during postnatal development and the possible interaction between acidic and hypoxic stimuli. Responses to high [K+]e were comparable at all ages, but responses to hypoxia and hypercapnic acidosis were maximal in neonatal animals. Suppression of the hypoxic response in the rat AM was not mediated by opioids, because their agonists did not affect the hypoxic CA response. The association of hypercapnic acidosis and hypoxia, mimicking the episodes of asphyxia occurring during delivery, generates a more than additive secretory response in the neonatal rat AM. Our data confirm the loss of the direct sensitivity to hypoxia of the AM in the initial weeks of life and demonstrate a direct response of neonatal AM to hypercapnic acidosis. The synergistic effect of hypoxia and acidosis would explain the CA outburst crucial for adaptation to extrauterine life observed in naturally delivered mammals. hypercapnia; chemoreceptors; chromaffin cells  相似文献   

20.
目的:研究知母宁对慢性低O2高CO2大鼠肺小动脉Ⅰ、Ⅲ型胶原代谢的影响,并探讨其可能机制。方法:将SD大鼠36只随机分为正常对照组,4周低O2高CO2组,4周低O2高CO2+知母宁组。采用图像分析、氯胺T法、免疫组化、组织原位杂交技术等方法,监测各组大鼠肺动脉平均压(mPAP)、颈动脉平均压(mCAP)、肺细小动脉显微和超微结构、血CO浓度,血清及肺组织血红素氧合酶-1(HO-1)活性,肺组织羟脯氨酸含量,肺小动脉Ⅰ、Ⅲ型胶原及其基因表达的变化。结果:低O2高CO2组mPAP升高,肺细小动脉管壁增厚,管腔变小,中膜平滑肌细胞和外膜胶原纤维增生,肺血管重建形成,肺匀浆羟脯氨酸含量升高,肺小动脉Ⅰ型胶原及其mRNA表达增加;知母宁组上述变化均明显减轻(P均0.01)。此外,低O2高CO2组全血CO含量、血浆及肺组织匀浆HO-1活性升高,知母宁组上述指标较低O2高CO2组进一步升高(P均0.01)。三组间mCAP,Ⅲ型胶原及其mRNA表达无显著差异(P0.05)。结论:知母宁降低慢性低O2高CO2性肺动脉高压,减轻肺血管结构重建与其抑制肺动脉Ⅰ型胶原增殖有关,上调内源性CO/HO体系的表达为其可能重要机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号