首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photo-oxidation of desaspidin sensitized by chlorophyll   总被引:2,自引:0,他引:2       下载免费PDF全文
Hind G 《Plant physiology》1966,41(7):1237-1239
The uncoupler desaspidin is labile in the presence of oxidants at alkaline pH values. It also undergoes chlorophyll-sensitized photooxidation at a more acid pH. The products of the oxidation appear to have negligible activity in inhibiting electron transfer and photophosphorylation.  相似文献   

2.
The ATP levels in photophosphorylation, glycolysis and oxidative phosphorylation, in the unicellular green alga Scenedesmus obtusiusculus, were titrated with narrow concentration intervals of desaspidin in the presence of different concentrations of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), which allows the differentiation between non-cyclic, pseudocyclic and true cyclic photophosphorylation. The data on photophosphorylative ATP levels were compared with earlier data on total binding of phosphate. In the true cyclic process, both parameters are equally sensitive towards desaspidin. Under pseudocyclic conditions and in non-cyclic photophosphorylation, the level of ATP is more sensitive towards desaspidin than is total binding of phosphate. This suggests a structural difference between the cyclic and the two non-cyclic (one of which is also pseudocyclic) sites. The non-cyclic ATP level is more sensitive towards desaspidin than is pseudocyclic. This may be connected with the higher ATP level under pseudocyclic as compared to non-cyclic conditions.  相似文献   

3.
The effects of DBMIB on photophosphorylation and glycolysis in Scenedesmus obtusiusculus Chod. were investigated by measuring the uptake of inorganic phosphate. To analyze the effects of DBMIB on the different energy coupling possibilities in open chain and cyclic photophosphorylation, DBMIB was given to the algae in narrow concentration intervals between 10?6M to 10?4M, either alone, or in combination with DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) or desaspidin. DBMIB inhibits non-cyclic as well as cyclic photophosphorylation in Scenedesmus. However, the DCMU resistant photophosphorylation reactions are less sensitive to DBMIB than the open chain photophosphorylating system in non-DCMU treated cells. Low concentrations of DBMIB even released a part of the DCMU inhibition. Experiments with combinations of DBMIB and desaspidin also indicated that cyclic photophosphorylation is less sensitive to DBMIB than non-cyclic. The inhibition of DCMU resistant cyclic phosphorylation by DBMIB, which is a competitive inhibitor of quinones, indicated a participation of plastoquinones in this type of energy coupling as well as in the non-cyclic and DCMU-sensitive processes. The cyclic and the non-cyclic photophosphorylation pathways probably use different parts of the plastoquinone pool. For the purpose of the experiments, it was necessary to produce data for the effect of DBMIB (10?6–10?4M) on glycolysis. The highest concentration gave 50% inhibition.  相似文献   

4.
Narrow concentration intervals were used, covering 10?6– 10?4M desaspidin. The interaction with glycolysis involves three steps, the inhibitor constants (Ki:s) being in turn 2.7 × 10?5M, 1.3 × 10?4M, and high. About 18% of total glycolysis is inhibited in each of the two first steps, and 65% left for the third reaction. After compensation for glycolysis, oxidative phosphorylation may show a sudden jump to about 10% inhibition at 1.5 × 10?5M desaspidin, the possible Ki of the reaction starting here being very high. Correcting for glycolysis, desaspidin affects total Photophosphorylation in two steps, with the Ki values of 7.8 × 10?5M and 4.6 × 10?4M respectively. Inhibition in the first step is about 27% of the total photophosphorylation. By applying 10?6M DCMU[/3-(3, 4-dichlorophenyl)-l, l-dimethy lurea], one can abolish non-cyclic photophosphorylation. Desaspidin then reacts in a single step with a Ki of 1.4 × 10?4M. At 5 × 10?5M DCMU, also the pseudocyclic photophosphorylation is abolished. The remaining, true cyclic photophosphorylation has a single Ki of 2.3 × 10?5M for desaspidin. Under non-cyclic conditions, the true cyclic process contributes about 25% to total Photophosphorylation. Under pseudocyclic conditions, no cyclic photophosphorylation occurs. Under true cyclic conditions, the non-cyclic and pseudocyclic processes are inoperative. This indicates a regulative system, so that either (1) the (non-cyclic + true cyclic), (2) only the pseudocyclic, or (3) only the true cyclic systems can be traced, dependent on the level of DCMU applied. There are two sites for non-cyclic Photophosphorylation, one of them common to the pseudocyclic pathway. Cyclic photophosphorylation has a third site, different from the other two.  相似文献   

5.
Euglena chloroplasts, isolated by Yeda press treatment contain endogenous cytochrome 552. Antibodies against cytochrome 552 from Euglena gracilis do not agglutinate chloroplasts and do not inhibit photosynthetic electron flow from water to NADP+. There is also no influence on cyclic photophosphorylation with phenazine methosulfate as mediator and on photooxidation of endogenous cytochrome 552. However, in the presence of cholate the photooxidation of the cytochrome is inhibited by antibodies.Cyclic photophosphorylation is not restored by addition of cytochrome 552 to the assay mixture but is stimulated by trapping the cytochrome in the thylakoid vesicles during sonication.Trapped cytochrome 552 is not accessible to antibodies. It is concluded that the original site of action for endogenous cytochrome 552 is inside the thylakoids. This site can be dislocated to the outside during fragmentation of chloroplasts.  相似文献   

6.
The "Triton Subchloroplast Fraction I" or "TSF-I particles" can be further fractionated into a cytochrome fraction and a P-700-containing fraction essentially free of cytochromes. The cytochrome complex contains cytochromes f and b6 in approx. equimolar amounts, and, in addition, also plastocyanin and one iron-sulfur protein, all in the bound state. Bound plastocyanin was characterized by EPR spectroscopy. The EPR spectrum of the bound iron-sulfur protein resembles that previously detected in Phostosystem I particles under highly reducing conditions at lower than -560 mV. The redox potential of P-700 in the cytochrome-free high-P-700 particles was measured to be +468 mV; those of cytochromes f and b6 are +345 and -140 mV, respectively. Among the four components present in the complex, only cytochrome f can be coupled to a Photosystem I particle and undergoes photooxidation. This coupled photooxidation is totoally inhibited by KCN and only partially inhibited by HgCl2. The similarity of the complex containing cytochromes f and b6, plastocyanin, and an iron-sulfur protein to complexes III and IV of the mitochondrial respiratory redox chain and a possible involvement of the complex in cyclic photophosphorylation are noted and discussed.  相似文献   

7.
A number of pteridines were examined for activity in promoting photophosphorylation in broken spinach chloroplasts and in stimulating cytochrome c photooxidation in sonicated chloroplasts. Correlation was found between activities for the 2 reactions. Photophosphorylation promoted by pteridines was inhibited by DCMU and by anaerobic conditions. It is concluded that pteridines may stimulate photophosphorylation by linking photosystem 1 with molecular oxygen and thereby allowing noncyclic electron flow.

Aromatic pteridines in both the 2,4-dihidroxy- and 2-amino-4-hydroxy-series were active; substitution at the 6 (or 7) position was a necessary but not sufficient condition for activity in both reactions.

Reducing agents increased photophosphorylation activity of aromatic pteridines and an oxidant increased activity of a tetrahydropteridine. It is postulated that pteridines are most active in their semiquinone or unstable dihydro forms.

  相似文献   

8.
Keck RW  Boyer JS 《Plant physiology》1974,53(3):474-479
Cyclic and noncyclic photophosphorylation and electron transport by photosystem 1, photosystem 2, and from water to methyl viologen (“whole chain”) were studied in chloroplasts isolated from sunflower (Helianthus annus L. var Russian Mammoth) leaves that had been desiccated to varying degrees. Electron transport showed considerable inhibition at leaf water potentials of −9 bars when the chloroplasts were exposed to an uncoupler in vitro, and it continued to decline in activity as leaf water potentials decreased. Electron transport by photosystem 2 and coupled electron transport by photosystem 1 and the whole chain were unaffected at leaf water potentials of −10 to −11 bars but became progressively inhibited between leaf water potentials of −11 and −17 bars. A low, stable activity remained at leaf water potentials below −17 bars. In contrast, both types of photophosphorylation were unaffected by leaf water potentials of −10 to −11 bars, but then ultimately became zero at leaf water potentials of −17 bars. Although the chloroplasts isolated from the desiccated leaves were coupled at leaf water potentials of −11 to −12 bars, they became progressively uncoupled as leaf water potentials decreased to −17 bars. Abscisic acid and ribonuclease had no effect on chloroplast photophosphorylation. The results are generally consistent with the idea that chloroplast activity begins to decrease at the same leaf water potentials that cause stomatal closure in sunflower leaves and that chloroplast electron transport begins to limit photosynthesis at leaf water potentials below about −11 bars. However, it suggests that, during severe desiccation, the limitation may shift from electron transport to photophosphorylation.  相似文献   

9.
A group of 12 alkaloids were tested as inhibitors of photophosphorylation in spinach chloroplasts. Ajmaline, a dihydroindole alkaloid, was found to be the strongest inhibitor of both cyclic and non-cyclic photophosphorylation. Low concentrations of ajmaline also inhibited the dark and light ATPases, and the coupled electron flow from water to ferricyanide, measured either as ferrocyanide formed or as oxygen evolved, but not the uncoupled electron transport or the pH rise of illuminated unbuffered suspensions of chloroplasts. Higher concentrations of ajmaline stimulated, instead of inhibiting, photosynthetic electron transport or oxygen evolution and decreased the pH rise, thus behaving as an uncoupler, such as ammonia.Photophosphorylation was partially inhibited by 100 μM dihydrosanguinarine, 100 μM dihydrochelerythrine (benzophenanthridine alkaloids); 500 μM O,O'-dimethylmagnoflorine, 500 μM N-methylcorydine (aporphine alkaloids) and 1 mM julocrotine. They also inhibited coupled oxygen evolution and only partially (dihydrosanguinarine and dihydrochelerythrine) or not at all (the other alkaloids) uncoupled oxygen evolution.Spegazzinine (dihydroindole alkaloid), magnoflorine, N-methylisocorydine, coryneine (aporphine alkaloids), candicine and ribalinium chloride were without effect on photophosphorylation at 500 μM.  相似文献   

10.
By an improved isolation procedure chloroplasts could be obtained from the alga Bumilleriopsis filiformis (Xanthophyceae) which exhibited high electron transport rates tightly coupled to ATP formation. Uncouplers both stimulate electron transport and inhibit photophosphorylation. These chloroplasts retain almost all soluble cytochrome c-553 besides a membrane-bound cytochrome c-554.5 (=f-554.5). Sonification or iron deficiency removed the soluble cytochrome only with a concurrent decrease of electron transport from water to methyl viologen or to NADP and decreased non-cyclic and cyclic photophosphorylation. However, photosynthetic control and the P/2e ratios remain unaltered. In Bumilleriopsis, which apparently has no plastocyanin, the soluble cytochrome c-553 seemingly links electron transport between the bound cytochrome c and P-700.  相似文献   

11.
Effects of the R- and S-isomers and racemate of 1-(alpha-methylbenzyl)-3-(3,4-dichlorophenyl)urea (MBPU) were measured on phosphorylation and electron transport in mung bean (Phaseolus aureus L.) mitochondria and spinach (Spinacia oleracea L.) chloroplasts.In chloroplasts, S-MBPU inhibited basal and methylamine-uncoupled electron transport with ferricyanide as the oxidant, both photoreduction and coupled photophosphorylation with water as the electron donor and with ferricyanide and nicotinamide adenine dinucleotide phosphate (NADP) as oxidants, and cyclic photophosphorylation with phenazine methosulfate as the electron mediator under an argon gas phase. With ascorbate 2,6-dichloro-phenolindophenol as the electron donor, phosphorylation coupled to NADP reduction was inhibited, but the reduction of NADP was not inhibited. The R-isomer of MBPU, like the S-isomer, inhibited all of the photophosphorylation reactions studied. However, unlike the S-isomer, the R-isomer either did not inhibit or was a very weak inhibitor of all photoreduction reactions. The effects of the MBPUs on the chloroplast reactions can be explained by action at two different sites: an optically specific site near photosystem II and the oxygen evolution pathway, and a second optically nonspecific site associated with the generation of ATP.In mitochondria, both the R- and S-isomers stimulated state 4 respiration, inhibited state 3 respiration, and released oligomycin-inhibited respiration with malate, succinate, and NADH as substrates. Both enantiomers were equally active in all studies with malate and succinate as substrates. However, with NADH as substrate, R-MBPU was a stronger inhibitor of state 3 respiration and a weaker stimulator of state 4 respiration than S-MBPU.  相似文献   

12.
High rates of both cyclic and noncyclic photophosphorylation were measured in chloroplast lamellae isolated from purified guard cell protoplasts from Vicia faba L. Typical rates of light-dependent incorporation of 32P into ATP were 100 and 190 micromoles ATP per milligram chlorophyll per hour for noncyclic (water to ferricyanide) and cyclic (phenazine methosulfate) photophosphorylation, respectively. These rates were 50 to 80% of those observed with mesophyll chloroplasts. Noncyclic photophosphorylation in guard cell chloroplasts was completely inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea supporting the notion that photophosphorylation is coupled to linear electron flow from photosystem II to photosystem I. Several lines of evidence indicated that contamination by mesophyll chloroplasts cannot account for the observed photophosphorylation rates.

A comparison of the photon fluence dependence of noncyclic photophosphorylation in mesophyll and guard cell chloroplasts showed significant differences between the two preparations, with half saturation at 0.04 and 0.08 millimole per square meter per second, respectively.

  相似文献   

13.
Noun Shavit  Mordhay Avron 《BBA》1967,131(3):516-525
1. The rate of the Hill reaction and photophosphorylation, and the ratio of ATP produced to the electron flow are shown to be strongly dependent on the solute concentration of the medium.

2. A large part, but not all, of the requirement for MgCl2 or phosphate in photophosphorylation can be replaced by SrCl2 or other solutes.

3. In two-stage photophosphorylation, solutes are required during the light-activation stage.

4. The presence of solutes causes marked changes in the packed volume of the chloroplasts, and their light-scattering properties. These changes are essentially complete within 1 min.

5. The effectiveness of solutes in enhancing the rate of electron transport and photophosphorylation parallels their effectiveness in inducing conformational changes in chloroplasts.

6. It is suggested that the solutes act by inducing a conformational change of the chloroplast structure which is more optimal for electron transfer and coupled phosphorylation.  相似文献   


14.
Light-induced difference spectra between 400 and 640 nm of Rhodospirillum rubrum chromatophores were performed in the presence and absence of exogenous electron donor/acceptor systems and compared with the chemical oxidation spectrum. The results indicate that the component previously defined as P430 is not a unique entity but rather represents different species, or a mixture of species, under various conditions. Under all conditions in which the reaction center bacteriochlorophyll is reversibly photooxidized, as indicated by the bleaching around 600 nm, it is also contributing to the absorbance increase around 430 nm. In one case, in presence of reduced dichloroindophenol and in the absence of oxygen, the photooxidation of reaction center bacteriochlorophyll is fully supressed. Under these conditions an irreversible change around 430 nm is still observed and seems to be due to the Soret band of b-type cytochrome. In the presence of reduced dichloroindophenol and absence of oxygen there is a marked inhibition of photophosphorylation. This inhibition is apparently due to the complete reduction of the cyclic electron carriers. Addition of the low potential dye benzyl viologen facilitates an almost complete recovery of the reversible photooxidation of reaction center bacteriochlorophyll as well as of photophosphorylation. These results indicate that the apparent mid-point potential of the primary electron acceptor in Rhodospirillum rubrum chromatophores is probably in the range of that of benzyl viologen (E'o = - 340 mV).  相似文献   

15.
ATP and pyrophosphate at high concentration (greater than 1 mM) inhibited photophosphorylation of isolated spinach chloroplasts in the normal salt medium and did not cause stimulation of electron transport. The inhibition of photophosphorylation by ATP or pyrophosphate was shown to be abolished by the addition of excess MgCl2, ADP and phosphate. It has been demonstrated that the rates of photophosphorylation in the absence and presence of ATP or pyrophosphate are determined similarly by the concentrations of magnesium-ADP (Mg - ADP-) and magnesiumphosphate (Mg - Pi) complexes. It is highly probable that Mg - ADP- and Mg - Pi, but not free ADP and free phosphate, are the active form of the substrates of photophosphorylation. This is in support of the view that ATP inhibits photophosphorylation by decreasing the concentration of Mg2+ which is available for the formation of the complex with ADP and phosphate.  相似文献   

16.
Isolated Euglena chloroplasts retain up to 50% of cytochrome 552 on a chlorophyll basis compared to the content of cells. Cytochrome 563 is found in equal amount in chloroplasts and cells. The amount of cytochrome 552 retained depends on the isolation procedure of chloroplasts.Cytochrome 552 can be further liberated from chloroplasts by mechanical treatment or incubation with detergent. It is concluded that cytochrome 552 is not tightly bound in the membrane but rather trapped in the thylakoids of the chloroplasts.In photosynthetic electron flow, cytochrome 552 is functioning as donor for photosystem I, mediating electron flow from cytochrome 558 to P700 under our conditions.Antimycin A stimulates the photooxidation of cytochrome 552 and of cytochrome 558.The rates of electron flow from water to NADP+ and of cyclic photophosphorylation mediated by phenazine methosulfate correlate with the content of endogenous cytochrome 552 in the chloroplasts. External readdition of cytochrome 552 to deficient chloroplasts causes reconstitution of NADP+ reduction but not of cyclic photophosphorylation. Mechanical treatment or other means of fragmentation of chloroplasts results in the exposure of originally buried reaction sites for external cytochrome 552.  相似文献   

17.
E.F. Elstner  R. Kramer 《BBA》1973,314(3):340-353
The mechanism of ascorbate photooxidation in isolated chloroplasts has been studied. The enzyme superoxide dismutase has been used as a tool to show that ascorbate is oxidized by the superoxide free radical ion, which is formed during the autooxidation of a low-potential electron acceptor.

In the absence of an artificial, low-potential electron acceptor, addition of ascorbate stimulates photophosphorylation in isolated chloroplasts. This effect of ascorbate is abolished by superoxide dismutase, indicating that both the superoxide free radical ion and ascorbate are responsible for the stimulation of photophosphorylation. In this case, the superoxide free radical ion seems to be formed during the autooxidation of an endogenous electron acceptor.

In the presence of ferredoxin and NADP+, photophosphorylation in isolated chloroplasts stops as soon as the available NADP+ is fully reduced. If ascorbate is present in this system, however, a linear rate of photophosphorylation is maintained in spite of the fact, that NADP+ is fully reduced. This ascorbate-mediated photophosphorylation again is abolished by superoxide dismutase.

During the catalysis of this oxygen-dependent photophosphorylation, ascorbate consumption is not observed. These findings support the idea, that in chloroplasts ascorbate together with the superoxide free radical ion may function in providing additional ATP by an oxygen-dependent photophosphorylation.  相似文献   


18.
Inhibition of photophosphorylation by kaempferol   总被引:2,自引:2,他引:0       下载免费PDF全文
Kaempferol, a naturally occurring flavonol, inhibited coupled electron transport and both cyclic and noncyclic photophosphorylation in isolated pea (Pisum sativum) chloroplasts. Over a concentration range which gave marked inhibition of ATP synthesis, there was no effect on basal or uncoupled electron flow or light-induced proton accumulation by isolated thylakoids. It is suggested that kaempferol acts as an energy transfer inhibitor.  相似文献   

19.
The influence of a series of anions on photosynthetic reaction rates in spinach chloroplasts is descibed. For the most part, the stimulatory and inhibitory effects of these ions can be related to their chaotropic properties, although F, a nonchaotropic anion, inhibits photosystem II reactions and SO 4 2− and F inhibit photophosphorylation. Other exceptions include less severe effects of nitrate than expected and unusual sensitivity to iodide by photosystem I. Since free iodine inhibits photosystem I the iodine effect may be related to photooxidation of I to I0 by photosystem I. Cyclic and noncyclic photophosphorylation usually show greater sensitivity to each chaotrope than photosystems I and II activity, which suggests that phosphorylation factors, such as CF1, are easily detached or dissociated. Bromide is unusual in that it appears to affect photophosphorylation and electron transport at similar low concentrations. The type of cation appears to influence the response to the chaotropic anion, especially as increased inhibition by chloride in the presence of magnesium in photophosphorylation reactions.  相似文献   

20.
Mizuho Komatsu  Satoru Murakami 《BBA》1976,423(1):103-110
ATP and pyrophosphate at high concentration (> 1 mM) inhibited photophosphorylation of isolated spinach chloroplasts in the normal salt medium and did not cause stimulation of electron transport. The inhibition of photophosphorylation by ATP or pyrophosphate was shown to be abolished by the addition of excess MgCl2, ADP and phosphate. It has been demonstrated that the rates of photophosphorylation in the absence and presence of ATP or pyrophosphate are determined similarly by the concentrations of magnesium-ADP (Mg · ADP?) and magnesium-phosphate (Mg · Pi) complexes.It is highly probable that Mg · ADP? and Mg · Pi, but not free ADP and free phosphate, are the active form of the substrates of photophosphorylation. This is in support of the view that ATP inhibits photophosphorylation by decreasing the concentration of Mg2+ which is available for the formation of the complex with ADP and phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号