首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermoanaerobium Tok6-B1 pullulanase (EC 3.2.1.41) was active on alpha 1-6-glucosidic linkages of pullulan, amylopectin and glycogen and the alpha 1-4 linkages of amylose, amylopectin and glycogen but not of pullulan. Hydrolysis of short-chain-length malto-oligosaccharides (seven or fewer glucose residues) yielded maltose as product. Pullulan hydrolysis was pH-dependent and a plot of log(V/Km) versus pH implied a carboxy group with pKa 4.3 at the active site. Modification with 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide (EDAC) confirmed this view, and analysis of the order of reaction and inactivation kinetics suggested the presence of a single carboxy group at a catalytic centre of the active site. EDAC-mediated inhibition of pullulan alpha 1-6-bond hydrolysis was relieved by amylose or pullulan. Similarly both pullulan and amylose protected the activity directed at alpha 1-4 bonds of amylose from EDAC inhibition. When both amylose and pullulan were simultaneously present, the observed rate of product formation closely fitted a kinetic model in which both substrates were hydrolysed at the same active site.  相似文献   

2.
Summary Extracellular pullulanase (pullulan 6-glucanohydrolase, EC 3.2.1.41) was purified from cell free culture supernatants of Thermoanaerobium Tok6-B1 by ammonium sulphate precipitation, affinity precipitation, gel exclusion and ion exchange chromatography. A final purification factor of over 1600 was achieved. A molecular weight of 120 kD was determined by steric exclusion HPLC. Enzyme activity was specifically directed towards the 1–6 glucosidic linkages of pullulan resulting in 100% conversion to maltotriose and also possessed activity towards 1–4 linkages of starch, amylopectin and amylose producing maltooligosaccharides (DP2-DP4) as products. Maltotetraose was slowly hydrolysed to maltose. Values of K m (% w/v) were 7.3×10-3 for pullulan, 2.7×10-3 for amylopectin and 4.7×10-3 for Lintner's starch. Pullulanase activity was resistant to 6 M urea and was thermostable at temperatures up to 80°C (t 1/2 in the order of hours). Above 80°C thermal denaturation was significant (t 1/2=17 min at 85°C; 5 min at 90°C) but became less so in the presence of substrate (pullulan or starch). Thermostability was greatest at the pH activity optimum (pH 5.5) and was promoted by Ca2+ ions.Abbreviations BSA bovine serum albumin - EDTA ethylenediamine tetracetic acid - HPLC high performance liquid chromatography - MES 2-[N-Morpholino] ethanesulphonic acid - MOPS 3-[N-Morpholino] propanesulphonic acid - Tris tris-(hydroxymethyl)methylamine  相似文献   

3.
An anaerobic, extremely thermophilic, xylanolytic nonspore-forming bacterium, strain X6B, was isolated from a 70°C Icelandic hot spring sediment. The bacterium was rod-shaped, 3.6–5.9 m long and 0.7 to 1.0 m wide, and cells grew singly, in pairs, and occasionally formed chains. The bacterium was nonmotile with no flagella. Cells from mid-to late exponential gowth-phase cultures stained gram-negative but had a gram-positive like cell wall structure in transmission electron photomicrographs. The bacterium grew between 50°C and 78°C with an optimum temperature at about 65°C to 68°C. Growth occurred between pH 5.2 and 8.5 with an optimum pH close to 7. During growth on beech wood xylan, glucose and d-xylose, the isolate produced CO2, acetate and H2 as major fermentation products, and a small amounts of ethanol; lactate was not produced. X6B did not reduce acetone to isopropanol or sulphate or thiosulfate to sulfide. The base composition of X6B's cellular DNA was 35.7 mol% guanine + cytosine. The properties of this strain do not fit any previously described species. The name proposed for the isolated bacterium was Thermoanaerobium acetigenum, spec. nov.  相似文献   

4.
Summary A cellulolyticm obligately anaerobic, extreme thermophile (strain NA10) was isolated from an alkaline hot spring in Nagano Prefecture, Japan. The microorganism was a non-spore-forming, flagellated rod which had a negative reaction to Gram stain, and occurred singly or in pairs. The growth temperature was between 50° C and 85° C with the optimum at 75° C, and the growth pH was between 6.0 and 9.5 with the optimum at 8.1. The anaerobe characteristically fermented cellulose, and produced acetic acid, H2, CO2 (main products) and lactic acid (minor product). The DNA had a base composition of 37.7 mol% guanine+cytosine content.  相似文献   

5.
The expression of a high-Mr sialogalactoprotein (gp580) on rat 13762NF mammary adenocarcinoma cells was identified and correlated with spontaneous metastatic potential to colonize lung [Steck & Nicolson (1983) Exp. Cell Res. 147, 255-267]. Using a highly metastatic tumour-cell clone, MTLn3, we isolated and characterized gp580 from cells growing in vitro and in vivo in the mammary fat-pads of Fischer 344 rats. The glycoprotein was extracted with 4 M-guanidinium chloride/4% Zwittergent 3-12 solution in the presence of proteinase inhibitors. The extracts were then subjected to dissociative CsCl-density-gradient centrifugation, gel filtration on Sepharose CL-2B columns and ion-exchange chromatography on DEAE-Sephacel. The isolated glycoprotein possessed low electrophoretic mobility in SDS/polyacrylamide gels, and after desialylation bound 125I-labelled peanut agglutinin. Electrophoresis of gp580 in polyacrylamide-gradient gels resulted in a diffuse but homogeneous migrating band of Mr approx. 55,000. After removal of carbohydrate, gp580 was demonstrated to have a protein core of Mr approx. 150,000. The gp580 had a high density (1.430 g/ml) on isopycnic centrifugation in 4 M-guanidinium chloride and was resistant to most proteinases and other degradative enzymes, suggesting a mucin-like structure. Amino acid and carbohydrate analyses revealed that gp580 has high contents of serine, threonine, glutamic acid, aspartic acid, glucosamine and galactosamine; several acidic and neutral oligosaccharides were obtained from alkaline-borohydride digests. Cellular localization studies suggested that gp580 is associated mainly with the cell-surface and extracellular-matrix fractions of MTLn3 cells.  相似文献   

6.
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90°C. It was found to be able to grow in the presence of micromolar molecular oxygen (O2). Activity of NADH oxidase was detected in the cell-free extract of T. hypogea, from which an NADH oxidase was purified to homogeneity. The purified enzyme was a homodimeric flavoprotein with a subunit of 50 kDa, revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the reduction of O2 to hydrogen peroxide (H2O2), specifically using NADH as electron donor. Its catalytic properties showed that the NADH oxidase had an apparent Vmax value of 37 mol NADH oxidized min–1 mg–1 protein. Apparent Km values for NADH and O2 were determined to be 7.5 M and 85 M, respectively. The enzyme exhibited a pH optimum of 7.0 and temperature optimum above 85°C. The NADH-dependent peroxidase activity was also present in the cell-free extract, which could reduce H2O2 produced by the NADH oxidase to H2O. It seems possible that O2 can be reduced to H2O by the oxidase and peroxidase, but further investigation is required to conclude firmly if the purified NADH oxidase is part of an enzyme system that protects anaerobic T. hypogea from accidental exposure to O2.  相似文献   

7.
The extremely thermophilic ethanol-producing strain A3 was isolated from a hot spring in Iceland. The cells were rod-shaped, motile, and had terminal spores; cells from the mid-to-late exponential growth phase stained gram-variable but had a gram-positive cell wall structure when viewed by transmission electron microscopy. Strain A3 used a number of carbohydrates as carbon sources, including xylan, but did not utilize microcrystalline cellulose. Fermentation end products were ethanol, acetate, lactate, CO2, and H2. The temperature optimum for growth was between 70 and 75° C, and growth occurred in the range of 50–75° C. The pH range for growth was 4.7–8.8, with an optimum at pH 7.0. Strain A3 was sensitive to tetracycline, chloramphenicol, penicillin G, neomycin, and vancomycin at 100 mg/l but was not sensitive to chloramphenicol and neomycin at 10 mg/l, which indicates that strain A3 belongs to the eubacteria. Addition of 50.66 kPa H2 or 2% NaCl did not affect growth. The isolate grew in the presence of exogenously added 4% (w/v) ethanol. The G+C ratio was 37 mol%. 16S rDNA studies revealed that strain A3 belongs to the genus Thermoanaerobacter. Genotypic and phenotypic differences between strain A3 and other related species indicate that strain A3 can be assigned to a new species, and the name Thermoanaerobacter mathranii is proposed. Received: 7 October 1996 / Accepted: 14 March 1997  相似文献   

8.
A gene coding for a pullulanase from the obligately anaerobic, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus has been cloned in Escherichia coli. It consists of an open reading frame (pulA) of 2478 bp which codes for an enzyme of 95 732 Da and is flanked by two other open reading frames. A truncated version of the gene which lacks 381 bp of 5′-sequence also has pullulanase activity and it appears that the amino-terminal portion of the gene is not essential for either activity or thermostability. Amino acid sequence comparisons with other published amylases and pullulanases showed that it possesses homology to the four key regions common to these enzymes.  相似文献   

9.
An inducible beta-galactosidase from an extremely thermophilic organism, Thermus strain 4-1A, has been isolated and partially purified. There were significant dissimilarities to T. aquaticus beta-galactosidase. It had a pl of 4.5, was inhibited by sulphydryl inhibitors and a number of transition metals, and was activated by EDTA and SH-containing reagents. The beta-galactosidase showed strong product inhibition, and weaker inhibition by some other mono- and disaccharides. It was very stable up to 90 degrees C at pH 8. On immobilization by diazonium linkage to porous glass, the pH optimum (6.0), the K(M) with ONPG (5mM) and the product inhibition were not altered.  相似文献   

10.
The mutS gene, implicated in DNA mismatch repair, was cloned from an extremely thermophilic bacterium, Thermus thermophilus HB8. Its nucleotide sequence encoded a 819-amino acid protein with a molecular mass of 91.4 kDa. Its predicted amino acid sequence showed 56 and 39% homology with Escherichia coli MutS and human hMsh2 proteins, respectively. The T.thermophilus mutS gene complemented the hypermutability of the E.coli mutS mutant, suggesting that T.thermophilus MutS protein was active in E.coli and could interact with E.coli MutL and/or MutH proteins. The T.thermophilus mutS gene product was overproduced in E.coli and then purified to homogeneity. Its molecular mass was estimated to be 91 kDa by SDS-PAGE but approx. 330 kDa by size-exclusion chromatography, suggesting that T.thermophilus MutS protein was a tetramer in its native state. Circular dichroic measurements indicated that this protein had an alpha-helical content of approx. 50%, and that it was stable between pH 1.5 and 12 at 25 degree C and was stable up to 80 degree C at neutral pH. Thermus thermophilus MutS protein hydrolyzed ATP to ADP and Pi, and its activity was maximal at 80 degrees C. The kinetic parameters of the ATPase activity at 65 degrees C were Km = 130 microM and Kcat = 0.11 s(-1). Thermus thermophilus MutS protein bound specifically with G-T mismatched DNA even at 60 degrees C.  相似文献   

11.
An extremely thermophilic (optimum growth at 88° C), anaerobic bacterium was isolated from a shallow submarine thermal spring. It appears to be an obligate heterotroph, capable of reducing sulfur to H2S. Oxygen sensitivity is apparent only at and above those temperatures where growth occurs, while the cultures retain their viability for long periods under air at 4° C. Insensitivity to chloramphenicol, vancomycin and streptomycin, and lack of muramic acid in its cell wall, indicate a possible affilitation of the new isolate to the thermoacidophilic archaebacteria. However, its neutrophilic and hetertrophic nature, as well as its DNA base composition (39.1 mol % guanine plus cytosine) set it apart from the known genera of this group.Abbreviations ASW Artifical sea water medium - Bis-tris propane 1,3-bis[tris(hydroxymethyl)-methylamino]-propane - Mes 2(N-morpholino)ethanesulfonic acid - Pipes Piperazine-N,N-bis(2-ethanesulfonic acid)  相似文献   

12.
Extremely thermophilic bacterium Calderobacterium hydrogenophilum contains DNA-dependent RNA polymerase with unusual properties. Purified enzyme is thermoresistant (40 min at 100 degrees C) and exhibits similar subunit composition as eubacterial RNA polymerases (e.g. Escherichia coli). However, the enzyme is not susceptible to antibiotics which inhibit eubacterial RNA polymerases (rifampicin and streptolydigin). The activity of the enzyme is inhibited by actinomycin D, daunomycin and heparin.  相似文献   

13.
A subfamily I aminotransferase gene homologue containing an open reading frame encoding 381 amino acid residues (Mr=42,271) has been identified in the process of the genome project of an extremely thermophilic bacterium, Thermus thermophilus HB8. Alignment of the predicted amino acid sequence using FASTA shows that this protein is a member of aminotransferase subfamily Igamma. The protein shows around 40% identity with both T. thermophilus aspartate aminotransferase [EC 2.6.1.1] and mammalian glutamine:phenylpyruvate aminotransferase [EC 2.6.1.64]. The recombinant protein expressed in Escherichia coli is a homodimer with a subunit molecular weight of 42,000, has one pyridoxal 5'-phosphate per subunit, and is highly active toward glutamine, methionine, aromatic amino acids, and corresponding keto acids, but has no preference for alanine and dicarboxylic amino acids. These substrate specificities are similar to those described for mammalian glutamine: phenylpyruvate aminotransferase. This is the first enzyme reported so far that has the glutamine aminotransferase activity in non-eukaryotic cells. As the presence of aromatic amino acid:2-oxoglutarate aminotransferase [EC 2.6.1.57] has not been reported in T. thermophilus, this enzyme is expected to catalyze the last transamination step of phenylalanine and tyrosine biosynthesis. It may also be involved in the methionine regeneration pathway associated with polyamine biosynthesis. The enzyme shows a strikingly high pKa value (9.3) of the coenzyme Schiff base in comparison with other subfamily I aminotransferases. The origin of this unique pKa value and the substrate specificity is discussed based on the previous crystallographic data of T. thermophilus and E. coli aspartate aminotransferases.  相似文献   

14.
A new anaerobic thermophilic Gram-positive, nonsporeforming bacterium strain ZE-1 was isolated from a hot spring of Kamchatka (USSR). The cells are rod-shaped, (0.5–0.8 · 2.0–20 m), non-motile. The bacterium can grow between 42 and 75°C; the optimal temperature is 65°C. The growth is possible between pH values 5.0 and 8.5; optimal pH is 7.0. The cultures grow on the media containing peptone, yeast extract, or casein hydrolysate as nitrogen sources in the presence of glucose or some other sugars, mannitol or starch. The main fermentation products of glucose are ethanol, acetate, lactate, H2, CO2; byproducts are propionic, butyric and isovaleric acids. Glucose is metabolized via Embden-Meyerhoff-Parnas pathway. Molecular hydrogen does not inhibit growth. The bacterium does not reduce aceton to isopropanol, but is able to form H2S from elemental sulfur. The bacterium contains a soluble hydrogenase. This enzyme catalyzes both evolution and uptake of H2 and is active in the presence of methyl viologen. The DNA-base composition is 34.6 mol%; the genome size 2.08x109 D. The name proposed for the isolated bacterium strain ZE-1 is Thermoanaerobium lactoethylicum spec. nov.  相似文献   

15.
Summary The organisation of the leucine genes in Thermus thermophilus HB8 was analysed by examining the ability of recombinant DNAs to complement Escherichia coli mutations. The arrangement of the genes is different from that in the mesophilic bacteria E. coli and Salmonella typhimurium. The promoter responsible for the expression of the leuB, leuC and leuD genes of Thermus HB8 in E. coli was identified. The sequence of Thermus DNA containing this promoter revealed structural similarities to the promoter and attenuator regions of the E. coli leucine operon.  相似文献   

16.
The ATP-dependent 6-phosphofructokinase (ATP-PFK) of the hyperthermophilic bacterium Thermotoga maritimawas purified 730-fold to homogeneity. The enzyme is a 140-kDa homotetramer composed of 34 kDa subunits. Kinetic constants were determined for all substrates in both reaction directions at pH 7 and at 75 degrees C. Rate dependence (forward reaction) on fructose 6-phosphate (F-6-P) showed sigmoidal kinetics with a half-maximal saturation constant ( S(0.5)) of 0.7 mM and a Hill coefficient of 2.2. The apparent K(m) for ATP was 0.2 mM and the apparent V(max) value was about 360 U/mg. The enzyme also catalyzed in vitro the reverse reaction with an apparent K(m) for fructose 1,6-bisphosphate and ADP of 7.6 mM and 1.4 mM, respectively, and an apparent V(max) of about 13 U/mg. Divalent cations were required for maximal activity; Mg(2+), which was most effective, could partially be replaced by Mn(2+) and Fe(2+). Enzyme activity was allosterically regulated by classical effectors of ATP-PFKs of Eukarya and Bacteria; it was activated by ADP and inhibited by PEP. The enzyme had a temperature optimum of 93 degrees C and showed a significant thermostability up to 100 degrees C. Using the N-terminal amino acid sequence of the subunit, the pfk gene coding for ATP-PFK was identified and functionally overexpressed in Escherichia coli. The purified recombinant ATP-PFK had identical kinetic and allosteric properties as the native enzyme purified from T. maritima. The deduced amino acid sequence showed high sequence similarity to members of the PFK-A family. In accordance with its allosteric properties, ATP-PFK of T. maritima contained the conserved allosteric effector-binding sites for ADP and PEP.  相似文献   

17.
The photolyase gene from Thermus thermophilus was cloned and sequenced. The characteristic absorption and fluorescence spectra of the purified T. thermophilus photolyase suggested that the protein has flavin adenine dinucleotide as a chromophore. The second chromophore binding site was not conserved in T. thermophilus photolyase. The purified enzyme showed light-dependent photoreactivation activity in vitro at 35 and 65 degrees C and was stable when subjected to heat and acidic pH.  相似文献   

18.
【目的】分离、保护油藏嗜热微生物资源,解析其主要的代谢特征。【方法】利用Hungte厌氧分离技术从大港油田埕海一区油层采出液中分离出厌氧菌株BF1。通过生理生化特征分析、16S rRNA基因序列比对与电化学分析,确定BF1的分类地位及其S元素代谢对腐蚀电流的影响。【结果】菌株BF1为严格嗜热厌氧革兰氏阴性杆菌,顶端产芽孢、不运动,菌体大小为0.42μm×(1.6 5.4)μm,单生、成对或成串生长。其温度生长范围为45°C 75°C(最适温度60°C);pH生长范围在4.5 8.5(最适pH 6.5)之间,比生长速率(μm)0.99 h 1,倍增时间为42 min。能利用葡萄糖、松三糖、棉子糖、甘露糖、乳糖、纤维二糖、果糖、核糖等碳水化合物,利用葡萄糖发酵的产物是乙醇、乙酸、CO2及少量的H2。菌株BF1能还原亚硫酸盐与硫代硫酸盐产生H2S,其耐受上限分别为50 mmol/L和75 mmol/L;还原硫代硫酸钠(50 mmol/L)后其极化电阻由2 099/cm2降低至776/cm2,腐蚀电流由9.936e-006 A提高至3.25e-005 A。细胞膜脂肪酸主要由高级饱和脂肪酸组成,含量最丰富的为十五烷酸占70.6%。菌株BF1的DNA(G+C)mol%含量为34.0%,其16S rRNA与Thermoanaerobacter pseudethanolicus DSM 2355T相似性最高,为98.3%,与T.brockii subsp.brockii DSM 1457T次之,为98.0%。菌株BF1的许多生理、生化特征与T.pseudethanolicus DSM 2355T和T.brockii subsp.brockii DSM 1457T有着明显的差别,如倍增时间、最适生长温度及底物利用等;而菌株BF1的细胞膜脂肪酸组成与T.pseude-thanolicus DSM 2355T也不相同。【结论】菌株BF1可能是Thermoanaerobacter属中的一个新种,其确切分类地位还需要进一步进行DNA分子杂交;其代谢元素硫提高腐蚀电流密度,可能会对油田管道与设备造成腐蚀。  相似文献   

19.
K Watanabe  H Iha  A Ohashi    Y Suzuki 《Journal of bacteriology》1989,171(2):1219-1222
The gene for an extremely thermostable oligo-1,6-glucosidase (dextrin-6-alpha-D-glucanohydrolase; EC 3.2.1.10) of obligately thermophilic Bacillus thermoglucosidasius KP1006 was cloned within a 4.2-kilobase HindIII-PvuII fragment of DNA by using the plasmid pUC19 as a vector and Escherichia coli C600 as a host. The gene was transcribed, presumably from its own promoter, in E. coli. E. coli with the hybrid plasmid accumulated oligo-1,6-glucosidase mainly in the cytoplasm. The level of enzyme production was comparable to that observed for B. thermoglucosidasius. The enzyme coincided absolutely with the B. thermoglucosidasius enzyme in its molecular weight (60,000), in its electrophoretic behavior on denaturing and nondenaturing polyacrylamide gels, in the temperature dependency of its stability and activity, and in its antigenic determinants.  相似文献   

20.
O-Acetyl-L-serine sulfhydrylase (EC 4.2.99.8) was first purified from an extremely thermophilic bacterium, Thermus thermophilus HB8, in order to ascertain that it is responsible for the cysteine synthesis in this organism cultured with either sulfate or methionine given as a sole sulfur source. Polyacrylamide gel electrophoreses both with and without SDS found high purity of the enzyme preparations finally obtained, through ammonium sulfate fractionation, ion exchange chromatography, gel filtration, and hydrophobic chromatography (or affinity chromatography). The enzyme activity formed only one elution curve in each of the four different chromatographies, strongly suggesting the presence of only one enzyme species in this organism. Molecular masses of 34,000 and 68,000 were estimated for dissociated subunit and the native enzyme, respectively, suggesting a homodimeric structure. The enzyme was stable at 70 degrees C at pH 7.8 for 60 min, and more than 90% of the activity was retained after incubation of its solution at 80 degrees C with 10 mm dithiothreitol. The enzyme was also quite stable at pH 8-12 (50 degrees C, 30 min). It had an apparent Km of 4.8 mM for O-acetyl-L-serine (with 1 mM sulfide) and a Vmax of 435 micromol/min/mg of protein. The apparent Km for sulfide was approximately 50 microM (with 20 mM acetylserine), suggesting that the enzyme can react with sulfide liberated very slowly from methionine. The absorption spectrum of the holo-enzyme and inhibition of the activity by carbonyl reagents suggested the presence of pyridoxal 5'-phosphate as a cofactor. The apo-enzyme showed an apparent Km of 29 microM for the cofactor at pH 8. Monoiodoacetic acid (1 mM) almost completely inactivated the enzyme. The meaning of a very high enzyme content in the cell is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号