首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.  相似文献   

2.
ABSTRACT

Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.  相似文献   

3.
Adventitious Roots and Secondary Metabolism   总被引:2,自引:0,他引:2  
Plants are a rich source of valuable secondary metabolites and in the recent years plant cell, tissue and organ cultures have been developed as an important alternative sources for the production of these compounds. Adventitious roots have been successfully induced in many plant species and cultured for the production of high value secondary metabolites of pharmaceutical, nutraceutical and industrial importance. Adoption of elicitation methods have shown improved synthesis of secondary metabolites in adventitious root cultures. Development of large-scale culture methods using bioreactors has opened up feasibilities of production of secondary metabolites at the industrial levels. In the present review we summarize the progress made in recent past in the area of adventitious root cultures for the production of secondary metabolites.  相似文献   

4.
Plants are a rich source of valuable secondary metabolites and in the recent years plant cell, tissue and organ cultures have been developed as an important alternative sources for the production of these compounds. Adventitious roots have been successfully induced in many plant species and cultured for the production of high- value secondary metabolites of pharmaceutical, nutraceutical and industrial importance. Adoption of elicitation methods have shown improved synthesis of secondary metabolites in adventitious root cultures. Development of large-scale culture methods using bioreactors has opened up feasibilities of production of secondary metabolites at the industrial levels. In the present review we summarize the progress made in recent past in the area of adventitious root cultures for the production of secondary metabolites.  相似文献   

5.
The possibility of producing useful chemicals by plant cell cultures has been studied intensively for the past 30 years. However, problems associated with low product yields and culture instabilities have restricted wider industrial application of plant cell culture. The employment of hairy root culture technology, developed in the past 10 years, offers new opportunities for in vitro production of plant secondary metabolites. In contrast to cell suspension cultures, hairy root cultures are characterized by high biosynthetic capacity and genetic as well as biochemical stability. In this review, the establishment and cultivation of hairy root cultures as well as their properties and application for production of secondary metabolites are discussed.  相似文献   

6.
The development of plant tissue (including organ and cell) cultures for the production of secondary metabolites has been underway for more than three decades. Plant cell cultures with the production of high-value secondary metabolites are promising potential alternative sources for the production of pharmaceutical agents of industrial importance. Medicinal plant cell suspension cultures (MPCSC), which are characterized with the feature of fermentation with plant cell totipotency, could be a promising alternative “chemical factory”. However, low productivity becomes an inevitable obstacle limiting further commercialization of MPCSC and the application to large-scale production is still limited to a few processes. This review generalizes and analyzes the recent progress of this bioproduction platform for the provision of medicinal chemicals and outlines a range of trials taken or underway to increase product yields from MPCSC. The scale-up of MPCSC, which could lead to an unlimited supply of pharmaceuticals, including strategies to overcome and solution of the associated challenges, is discussed.  相似文献   

7.
Over the last few years microalgae have gained increasing interest as a natural source of valuable compounds and as bioreactors for recombinant protein production. Natural high-value compounds including pigments, long-chain polyunsaturated fatty acids, and polysaccharides, which have a wide range of applications in the food, feed, cosmetics, and pharmaceutical industries, are currently produced with nontransgenic microalgae. However, transgenic microalgae can be used as bioreactors for the production of therapeutic and industrially relevant recombinant proteins. This technology shows great promise to simplify the production process and significantly decrease the production costs. To date, a variety of recombinant proteins have been produced experimentally from the nuclear or chloroplast genome of transgenic Chlamydomonas reinhardtii. These include monoclonal antibodies, vaccines, hormones, pharmaceutical proteins, and others. In this review, we outline recent progress in the production of recombinant proteins with transgenic microalgae as bioreactors, methods for genetic transformation of microalgae, and strategies for highly efficient expression of heterologous genes. In particular, we highlight the importance of maximizing the value of transgenic microalgae through producing recombinant proteins together with recovery of natural high-value compounds. Finally, we outline some important issues that need to be addressed before commercial-scale production of high-value recombinant proteins and compounds from transgenic microalgae can be realized.  相似文献   

8.
Many secondary metabolites that are normally undetectable or in low amounts in healthy plant tissue are synthesized in high amounts in response to microbial infection. Various abiotic and biotic agents have been shown to mimic microorganisms and act as elicitors of the synthesis of these plant compounds. In the present study, sub-lethal levels of electric current are shown to elicit the biosynthesis of secondary metabolites in transgenic and non-transgenic plant tissue. The production of the phytoalexin (+)-pisatin by pea was used as the main model system. Non-transgenic pea hairy roots treated with 30-100 mA of electric current produced 13 times higher amounts of (+)-pisatin than did the non-elicited controls. Electrically elicited transgenic pea hairy root cultures blocked at various enzymatic steps in the (+)-pisatin biosynthetic pathway also accumulated intermediates preceding the blocked enzymatic step. Secondary metabolites not usually produced by pea accumulated in some of the transgenic root cultures after electric elicitation due to the diversion of the intermediates into new pathways. The amount of pisatin in the medium bathing the roots of electro-elicited roots of hydroponically cultivated pea plants was 10 times higher 24 h after elicitation than in the medium surrounding the roots of non-elicited control plants, showing not only that the electric current elicited (+)-pisatin biosynthesis but also that the (+)-pisatin was released from the roots. Seedlings, intact roots or cell suspension cultures of fenugreek (Trigonella foenum-graecum), barrel medic, (Medicago truncatula), Arabidopsis thaliana, red clover (Trifolium pratense) and chickpea (Cicer arietinum) also produced increased levels of secondary metabolites in response to electro-elicitation. On the basis of our results, electric current would appear to be a general elicitor of plant secondary metabolites and to have potential for application in both basic and commercial research.  相似文献   

9.
Stably transformed transgenic hairy root cultures have the potential to be a valuable production platform for a variety of secondary metabolites. This study reports that a transgenic hairy root culture of Catharanthus roseus has been stably maintained for over 4.5 years. This culture carries a transgene that expresses the green fluorescent protein under the control of the glucocorticoid-inducible promoter. Genomic PCR confirmed the presence of the GFP insert within the hairy roots, and induction with dexamethasone caused a significant (p < 0.02) increase in GFP levels.  相似文献   

10.
Lavenders (Lavandula spp., Lamiaceae) are aromatic ornamental plants that are used widely in the food, perfume and pharmaceutical industries. The large-scale production of lavenders requires efficient in vitro propagation techniques to avoid the overexploitation of natural populations and to allow the application of biotechnology-based approaches for plant improvement and the production of valuable secondary metabolites. In this review we discuss micropropagation methods that have been developed in several lavender species, mainly based on meristem proliferation and organogenesis. Specific requirements during stages of micropropagation (establishment, shoot multiplication, root induction and acclimatization) and requisites for plant regeneration trough organogenesis, as an important step for the implementation of plant improvement programs, were revised. We also discuss different methods for the in vitro production of valuable secondary metabolites, focusing on the prospects for highly scalable cultures to meet the market demand for lavender-derived products.  相似文献   

11.
Hairy root research: recent scenario and exciting prospects   总被引:3,自引:0,他引:3  
High stability of the production of secondary metabolites is an interesting characteristic of hairy root cultures. For 25 years, hairy roots have been investigated as a biological system for the production of valuable compounds from medicinal plants. A better understanding of the molecular mechanism of hairy root development, which is based on the transfer of Agrobacterium rhizogenes T-DNA into the plant genome, has facilitated its increasing use in metabolic engineering. Hairy roots can also produce recombinant proteins from transgenic roots, and thereby hold immense potential for the pharmaceutical industry. In addition, hairy roots offer promise for phytoremediation because of their abundant neoplastic root proliferation. Recent progress in the scaling-up of hairy root cultures is making this system an attractive tool for industrial processes.  相似文献   

12.
Biotechnology for the production of plant secondary metabolites   总被引:10,自引:2,他引:8  
Verpoorte  R.  Contin  A.  Memelink  J. 《Phytochemistry Reviews》2002,1(1):13-25
The production of plant secondary metabolites by means of large-scale culture of plant cells in bioreactors is technically feasible. The economy of such a production is the major bottleneck. For some costly products it is feasible, but unfortunately some of the most interesting products are only in very small amounts or not all produced in plant cell cultures. Screening, selection and medium optimization may lead to 20- to 30-fold increase in case one has producing cultures. In case of phytoalexins, elicitation will lead to high production. But for many of the compounds of interest the production is not inducible by elicitors. The culture of differentiated cells, such as (hairy) root or shoot cultures, is an alternative, but is hampered by problems in scaling up of such cultures. Metabolic engineering offers new perspectives for improving the production of compounds of interest. This approach can be used to improve production in the cell culture, in the plant itself or even production in other plant species or organisms. Studies on the production of terpenoid indole alkaloids have shown that the overexpression of single genes of the pathway may lead for some enzymes to an increased production of the direct product, but not necessarily to an increased alkaloid production. On the other hand feeding of such transgenic cultures with early precursors showed an enormous capacity for producing alkaloids, which is not utilized without feeding precursors. Overexpression of regulatory genes results in the upregulation of a series of enzymes in the alkaloid pathway, but not to an improved flux through the pathway, but feeding loganin does result in increased alkaloid production if compared with wild-type cells. Indole alkaloids could be produced in hairy root cultures of Weigelia by overexpression of tryptophan decarboxylase and strictosidine synthase. Alkaloids could be produced in transgenic yeast overexpressing strictosidine synthase and strictosidine glucosidase growing on medium made out the juice of Symphoricarpus albus berries to which tryptamine is added. Metabolic engineering thus seems a promising approach to improve the production of a cell factory.  相似文献   

13.
Indole alkaloids are widely distributed secondary metabolites that exhibit a broad range of pharmacological activities. They are synthesized through plant biosynthetic pathways involving complex enzyme activities and regulatory strategies. Since many compounds of indole alkaloids are structurally too complex to be manufactured economically by chemical synthesis, they have to be isolated from naturally grown or cultivated plants. Therefore, the biotechnological production of high-value plant secondary metabolites in cultivated cells or transgenic plants is potentially an attractive alternative. The present review describes the regulation of indole alkaloids biosynthesis, as well as their pharmacological functions in plants such as anti-microbes, anti-inflammatory and anti-tumor. Furthermore, it discusses different strategies by which the genetic engineering of indole alkaloids biosynthesis through the reconstruction of the pathway achieves high production of specific compounds.  相似文献   

14.
Plant secondary metabolites, including pharmaceuticals, flavorings and aromas, are often produced in response to stress. We used chemical inducers of the pathogen defense response (jasmonic acid, salicylate, killed fungi, oligosaccharides and the fungal elicitor protein, cryptogein) to increase metabolite and biomass production in transformed root cultures of the medicinal plant, Withania somnifera, and the weed, Convolvulus sepium. In an effort to genetically mimic the observed effects of cryptogein, we employed Agrobacterium rhizogenes to insert a synthetic gene encoding cryptogein into the roots of C. sepium, W. somnifera and Tylophora tanakae. This genetic transformation was associated with stimulation in both secondary metabolite production and growth in the first two species, and in growth in the third. In whole plants of Convolvulus arvensis and Arabidopsis thaliana, transformation with the cryptogein gene led, respectively, to increases in the calystegines and certain flavonoids. A similar transgenic mimicry of pathogen attack was previously employed to stimulate resistance to the pathogen and abiotic stress. In the present study of biochemical phenotype, we show that transgenic mimicry is correlated with increased secondary metabolite production in transformed root cultures and whole plants. We propose that natural transformation with genes encoding the production of microbial elicitors could influence interactions between plants and other organisms.  相似文献   

15.
Different methods of in vitro culture of Catharanthus roseus provide new sources of plant material for the production of secondary metabolites such as indole alkaloids. Callus, cell suspension, plantlets, and transgenic roots cultured in the bioreactor are used in those experiments. The most promising outcomes include the production of the following indole alkaloids: ajmalicine in unorganised tissue, catharanthine in the leaf and cell culture in the shake flask and airlift bioreactor, and vinblastine in shoots and transformed roots. What is very important, enzymatic coupling of monomeric indole alkaloids, vindoline and catharanthine, is possible to form vinblastine in cell cultures. The method of catharanthine and ajmalicine production in the suspension culture in bioreactors has been successful. In this method, elicitation may be used acting on different metabolic pathways. Also of interest is the method of obtaining arbutin from the callus culture of C. roseus conducted with hydroquinone. The transformed root culture seems to be the most promising for alkaloid production. The genetically transformed roots, obtained by the infection with Agrobacterium rhizogenes, produce higher levels of secondary metabolites than intact plants. Also, whole plants can be regenerated from hairy roots. The content of indole alkaloids in the transformed roots was similar or even higher when compared to the amounts measured in studies of natural roots. The predominant alkaloids in transformed roots are ajmalicine, serpentine, vindoline and catharanthine, found in higher amounts than in untransformed roots. Transformed hairy roots have been also used for encapsulation in calcium alginate to form artificial seeds.  相似文献   

16.
We constructed a recombinant antibody fragment—single chain fragment-variable (scFv) antibody—derived from hybridoma cell lines to control the concentration of solasodine glycosides in hairy root cultures of Solanum khasianum transformed by the anti-solamargine (As)-scFv gene. The properties of the As-scFv protein expressed in Escherichia coli were almost identical to those of the parent monoclonal antibody (MAb). Up to 220 ng recombinant As-scFv was expressed per milligram of soluble protein in transgenic hairy root cultures of S. khasianum. The concentration of solasodine glycosides was 2.3-fold higher in the transgenic than in the wild-type hairy root, as reflected by the soluble As-scFv level and antigen binding activities. These results suggested that the scFv antibody expressed in transgenic hairy roots controlled the antigen level, thus representing a novel plant breeding methodology that can produce secondary metabolites.Communicated by F. Sato  相似文献   

17.
18.
Biotechnology is playing a vital alternative role in the production of pharmaceutical plant secondary metabolites to support industrial production and mitigate over-exploitation of natural sources. High-value pharmaceuticals that include alkaloids, flavonoids, terpenes, steroids, among others, are biosynthesized as a defensive strategy by plants in response to perturbations under natural environmental conditions. However, they can also be produced using plant cell, tissue, and organ culture techniques through the application of various in vitro approaches and strategies. In the past decades, efforts were on the clonal propagation, biomass and secondary metabolites production in the in vitro cultures of medicinally important plants that produce these molecules. In recent years, the effort has shifted towards optimizing culture conditions for their production through the application of cell line selection, elicitation, precursor feeding, two-phase co-culture among cell, tissue, and organ culture approaches. The efforts are made with the possibility to scale-up the production, meet pharmaceutical industry demand and conserve natural sources of the molecules. Applications of metabolic engineering and production from endophytes are also getting increasing attention but, the approaches are far from practical application in their industrial production.  相似文献   

19.
Cultivation of Marine Sponges   总被引:9,自引:0,他引:9  
There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly influence culture success are evaluated. In situ sponge aquacultures, based on old methods for producing commercial bath sponges, are still the easiest and least expensive way to obtain sponge biomass in bulk. However, success of cultivation with this method strongly depends on the unpredictable and often suboptimal natural environment. Hence, a better-defined production system would be desirable. Some progress has been made with culturing sponges in semicontrolled systems, but these still use unfiltered natural seawater. Cultivation of sponges under completely controlled conditions has remained a problem. When designing an in vitro cultivation method, it is important to determine both qualitatively and quantitatively the nutritional demands of the species that is to be cultured. An adequate supply of food seems to be the key to successful sponge culture. Recently, some progress has been made with sponge cell cultures. The advantage of cell cultures is that they are completely controlled and can easily be manipulated for optimal production of the target metabolites. However, this technique is still in its infancy: a continuous cell line has yet to be established. Axenic cultures of sponge aggregates (primmorphs) may provide an alternative to cell culture. Some sponge metabolites are, in fact, produced by endosymbiotic bacteria or algae that live in the sponge tissue. Only a few of these endosymbionts have been cultivated so far. The biotechnology for the production of sponge metabolites needs further development. Research efforts should be continued to enable commercial exploitation of this valuable natural resource in the near future. Received November 5, 1998; accepted June 20, 1999.  相似文献   

20.
Secondary metabolism of hairy root cultures in bioreactors   总被引:3,自引:0,他引:3  
Summary In vitro cultures are being considered as an alternative to agricultural processes for producing valuable secondary metabolites. Most efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Bioreactors used to culture hairy roots can be roughly divided into three types: liquid-phase, gas-phase, or hybrid reactors that are a combination of both. The growth and productivity of hairy root cultures are reviewed with an emphasis on successful bioreactors and important culture considerations. The latter include strain selection, production of product in relation to growth phase, media composition, the gas regime, use of elicitors, the role of light, and apparent product loss. Together with genetic engineering and process optimization, proper reactor design plays a key role in the development of successful large scale production of secondary metabolites from plant cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号