首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the changes in microbial community diversities and functions in natural downed wood at different decay stages in a natural oak forest in the Italian Alps, through metagenomics analysis and in vitro analysis. Alfa diversity of bacterial communities was affected by the decay stage and log characteristics, while beta diversity was mainly driven by log diameter. Fungal and archaeal beta diversities were affected by the size of the sampled wood (log diameter), although, fungi were prominently driven by wood decay stage. The analysis of genes targeting cell wall degradation revealed higher abundances of cellulose and pectin-degrading enzymes in bacteria, while in fungi the enzymes targeting cellulose and hemicellulose were more abundant. The decay class affected the abundance of single enzymes, revealing a shift in complex hydrocarbons degradation pathways along the decay process. Moreover, we found that the genes related to Coenzyme M biosynthesis to be the most abundant especially at early stages of wood decomposition while the overall methanogenesis did not seem to be influenced by the decay stage. Intra- and inter-kingdom interactions between bacteria and fungi revealed complex pattern of community structure in response to decay stage possibly reflecting both direct and indirect interactions.  相似文献   

2.
In the cirrhotic rat liver induced by carbon tetrachloride and phenobarbitone, the concentrations of mitochondrial Coenzyme Q were measured in comparison with other respiratory components. The concentration of cytochrome a(+a3) and Coenzyme Q significantly increased in the cirrhotic liver, without any changes in the ratio of Coenzyme Q to cytochrome a(+a3). It is suggested that such increase of Coenzyme Q plays an important role as one of the adaptive responses to compensate for the prolonged metabolic overload on the mitochondrial respiratory assembly. Also, from the findings that the concentrations of cytochrome a(+a3) in the mitochondria of cirrhotic liver increase concomitant with the severity of cirrhosis, it is suggested that the rise of Coenzyme Q levels may be one of the indicators for the decreased functional reserve capacity in liver cirrhosis.  相似文献   

3.
One hundred samples of muddy soil were collected from seven areas in the vicinity of Cairo and screened for the presence of keratinophilic fungi by using hair baiting isolation technique. Forty isolates of keratinophilic fungi were recovered and identified by recognition of their cultures, macro- and micromorphological features. Their physiological and molecular characteristics were studied by determination of their ubiquinone (Coenzyme Q) composition and DNA sequences of (ITS1-5.8S-ITS2) and 18S rRNA region sequences. The Keratinophilic isolates were identified as Chrysosporium carmichaelii, C. queenslandicum, C. zonatum, C. indicum, Aphanoascus mephitalis, and Uncinocarpus reesii. Chrysosporium zonatum was the most prevalent species and represented 42.5% of the total number of isolates. Each of C. carmichaelii and C. queenslandicum were equal in their prevalence and represented 15%. C. indicum comes next constituting 12.5%; followed by Uncinocarpus reesii which represented 10%. The least prevalent species in our study was Aphanoascus mephitalis, which was represented only 5% of the total keratinophilic isolates.  相似文献   

4.
Coenzyme Q10 is an important component of mitochondrial electron transport chain and antioxidant. Hyperthyroidism manifests hyperdynamic circulation with increased cardiac output, increased heart rate and decreased peripheral resistance. The heart is also under the oxidative stress in the hyperthyroidism. The aim of this study was to examine both how the coenzyme Q10 can affect heart ultrastructure in the hyperthyroidism and how the relationship between nitric oxide synthase (NOS) and heart damage and coenzyme Q10. Swiss Black C57 mice received 5 mg/kg L-thyroxine. Coenzyme Q10 (1.5 mg/kg) and L-thyroxine together was given to second group mice. Coenzyme Q10 and serum physiologic were applied to another two groups, respectively. All treatments were performed daily for 15 days by gavage. Free triiodothyronine and thyroxine were increased in two groups given L-thyroxine; thyroid-stimulating hormone level did not change. Hyperthyroid heart showed an increased endothelial NOS (eNOS) and inducible NOS (iNOS) immunoreactivity in the tissue. Coenzyme Q10 administration decreased these NOS immunoreactivities in the hyperthyroid animals. Cardiomyocytes of the hyperthyroid animals was characterized by abnormal shape and invaginated nuclei, and degenerative giant mitochondria. Desmosome plaques reduced in density. In hyperthyroid mice given coenzyme Q10, the structural disorganization and mitochondrial damage regressed. However, hearts of healthy mice given coenzyme Q10 displayed normal ultrastructure, except for increased mitochondria and some of them were partially damaged. Coenzyme Q10 increased the glycogen in the cardiomyocytes. In conclusion, coenzyme Q10 administration can prevent the ultrastructural disorganization and decrease the iNOS and eNOS increment in the hyperthyroid heart.  相似文献   

5.
To investigate the relationship between serum levels of Coenzyme Q10 and cardiac performance in thyroid disorders, we studied the cardiac performance and assessed serum levels of thyroid hormones and Coenzyme Q10 in 20 patients with hyperthyroidism, 5 patients with hypothyroidism and 10 normal subjects. A significant inverse correlation between thyroid hormones and Coenzyme Q10 levels was found by performing partial correlation analysis. Because low serum levels of Coenzyme Q10 were found in thyrotoxic patients and congestive heart failure may occur as a result of severe hyperthyroidism, 120 mg of Coenzyme Q10 was administered daily for one week to 12 hyperthyroid patients and the change in cardiac performance was assessed. Further augmentation of cardiac performance was found in hyperthyroid hearts, which were already augmented, after the administration of Coenzyme Q10. It appears, therefore, that the Coenzyme Q10 dose actually has a therapeutic value for congestive heart failure induced by severe thyrotoxicosis.  相似文献   

6.
7.
A new strategy for the efficient synthesis of C-5 heterocyclyl substituted Coenzyme Q analogues was developed by N-alkylation of bromomethylated quinone 11 with a series of amines 12 under metal-free conditions. In vitro antioxidant activities of these Coenzyme Q analogues were evaluated and compared with commercial antioxidant Coenzyme Q10 by employing DPPH assay. All these N-heterocyclyl substituted Coenzyme Q analogues are found to be exhibiting good antioxidant properties and may be used as potent antioxidants for combating oxidative stress.  相似文献   

8.
Coenzyme Q10(CoQ10) in human milk at different stages of maturity in mothers of preterm and full-term infants and its relation to the total antioxidant capacity of milk is described for the first time. Thirty healthy breastfeeding women provided colostrum, transition-milk and mature-milk samples. Coenzyme Q, alpha-, gamma- and delta-tocopherol, fatty acids and the total antioxidant capacity of the milk were analyzed. Coenzyme Q10 was found at higher concentrations for colostrum (0.81+/-0.06 vs. 0.50+/-0.05 micromol/l) and transition milk (0.75+/-0.06 vs. 0.45+/-0.05 micromol/l) in the full-term vs. the preterm group (similar results were found for total antioxidant capacity). Concentrations of alpha- and gamma-tocopherol were higher in the full-term group and decreased with time. In conclusion, CoQ10 is present in breast milk, with higher concentration in mothers of full-term infants. CoQ10 in breast milk decreases through lactation in mothers delivering full-term infants. Also, CoQ10, alpha- and gamma-tocopherol concentration in human milk directly correlates with the antioxidant capacity of the milk.  相似文献   

9.
产辅酶Q10酵母的发酵条件研究   总被引:17,自引:0,他引:17  
研究了豆油、豆粉、胡萝卜汁、西红柿汁、烟叶、β-胡萝卜素、桔子皮汁等自然物的添加对酵母发酵生产CoQ10的影响,结果表明它们均能大幅度提高酵母菌中CoQ10的含量。其中豆油、豆粉、西红柿汁、桔子皮汁是富含CoQ10。和胡萝卜素合成途经中的前体物质因而提高了CoQ10的产量;烟叶和β-胡萝卜素阻断了合成β-胡萝卜素的途经从而起到提高CoQ10合成的作用;胡萝卜汁的作用可能两兼而有之。因此可以得出以下结论,微生物中Co10的合成与β-胡萝卜素的合成密切相关。  相似文献   

10.
Antioxidant and prooxidant properties of mitochondrial Coenzyme Q   总被引:7,自引:0,他引:7  
Coenzyme Q is both an essential electron carrier and an important antioxidant in the mitochondrial inner membrane. The reduced form, ubiquinol, decreases lipid peroxidation directly by acting as a chain breaking antioxidant and indirectly by recycling Vitamin E. The ubiquinone formed in preventing oxidative damage is reduced back to ubiquinol by the respiratory chain. As well as preventing lipid peroxidation, Coenzyme Q reacts with other reactive oxygen species, contributing to its effectiveness as an antioxidant. There is growing interest in using Coenzyme Q and related compounds therapeutically because mitochondrial oxidative damage contributes to degenerative diseases. Paradoxically, Coenzyme Q is also involved in superoxide production by the respiratory chain. To help understand how Coenzyme Q contributes to both mitochondrial oxidative damage and antioxidant defences, we have reviewed its antioxidant and prooxidant properties.  相似文献   

11.
In mitochondria, most Coenzyme Q is free in the lipid bilayer; the question as to whether tightly bound, non-exchangeable Coenzyme Q molecules exist in mitochondrial complexes is still an open question.We review the mechanism of inter-complex electron transfer mediated by ubiquinone and discuss the kinetic consequences of the supramolecular organization of the respiratory complexes (randomly dispersed vs. super-complexes) in terms of Coenzyme Q pool behavior vs. metabolic channeling, respectively, both in physiological and in some pathological conditions. As an example of intra-complex electron transfer, we discuss in particular Complex I, a topic that is still under active investigation.  相似文献   

12.
Summary Methyl phenyl sulfide and cyclohexanone were oxidized to (R)- methyl phenyl sulfoxide and caprolactone by cyclohexanone monooxygenase. The reactions were carried out in a membrane reactor with the use of the macromolecular coenzyme poly (ethylene glycol)-NADP. Coenzyme regeneration was carried out with the 2-propanol/alcohol dehydrogenase system.  相似文献   

13.
辅酶Q10的生理作用及临床应用   总被引:6,自引:0,他引:6  
辅酶Q10是线粒体电子传递链中的一种重要辅酶,参与细胞氧化磷酸化及ATP生成过程。辅酶Q10是细胞代谢呼吸激活剂和免疫增强剂,具有抗氧化和自由基清除功能。辅酶Q10药物的临床应用主要在心血管疾病、高血压、神经系统疾病和免疫系统疾病方面。  相似文献   

14.
Coenzyme Q10(CoQ10) in human milk at different stages of maturity in mothers of preterm and full-term infants and its relation to the total antioxidant capacity of milk is described for the first time. Thirty healthy breastfeeding women provided colostrum, transition-milk and mature-milk samples. Coenzyme Q, α-, γ- and δ-tocopherol, fatty acids and the total antioxidant capacity of the milk were analyzed. Coenzyme Q10 was found at higher concentrations for colostrum (0.81 ± 0.06 vs. 0.50 ± 0.05 μmol/l) and transition milk (0.75 ± 0.06 vs. 0.45 ± 0.05 μmol/l) in the full-term vs. the preterm group (similar results were found for total antioxidant capacity). Concentrations of α- and γ-tocopherol were higher in the full-term group and decreased with time. In conclusion, CoQ10 is present in breast milk, with higher concentration in mothers of full-term infants. CoQ10 in breast milk decreases through lactation in mothers delivering full-term infants. Also, CoQ10, α- and γ-tocopherol concentration in human milk directly correlates with the antioxidant capacity of the milk.  相似文献   

15.
微生物发酵法是生产辅酶Q10的最佳工艺.辅酶Q10的生物合成途径包括异戊二烯焦磷酸合成、聚十异戊二烯焦磷酸合成、苯环修饰等过程.1-脱氧-D-木酮糖-5-磷酸合成酶、聚十异戊二烯焦磷酸合成酶、对羟基笨甲酸聚十异戊二烯焦磷酸转移酶等是Q10合成的关键酶.生产辅酶Q10的菌种可通过诱变、基因重组和支路敲除等方法获得.氧化还原电位控制、pH控制补料分批发酵、发酵萃取耦合技术等新工艺逐浙应用于辅酶Q10生产.  相似文献   

16.
Coenzyme Q10 (CoQ10) or ubiquinone, a redox component of the mitochondrial electron transport chains, is a powerful antioxidant and membrane stabilizer that may prevent cellular damage during myocardial ischemia and reperfusion therapy. Coenzyme Q10 has been used primarily as an adjuvant therapy for some cardiomyopathies. However, one of the main problems in CoQ10 administration is the high variability of endogenous plasma and tissue levels, which seems to be dependent on several factors. This work explores temporal 24h and seasonal variation as well as gender and racial differences in endogenous plasma ubiquinone concentration. Coenzyme Q10 measurements (quantified by HPLC-UV) of 16 healthy volunteers were done during the daytime hours of activity beginning at 09:00h one day and ending at 09:00h the next day (13 different determinations) in two distinct months, April and October, of the year. A statistically significant circadian rhythm in plasma ubiquinone concentration that includes only the fundamental 24h component was demonstrated both in the April and October data. Furthermore, the time-point means of the ubiquinone concentration in the October study were invariably higher than those obtained in the April study. No statistically significant differences were found in CoQ10 concentration between male and female subjects, both in April and in October. In addition, racial differences were demonstrated; lower plasma ubiquinone levels were found in Caucasian compared to African subjects. However, the latter small group of subjects failed to demonstrate a circadian rhythm, neither in the April nor in the October analysis.  相似文献   

17.
Coenzyme Q10 (CoQ10) or ubiquinone, a redox component of the mitochondrial electron transport chains, is a powerful antioxidant and membrane stabilizer that may prevent cellular damage during myocardial ischemia and reperfusion therapy. Coenzyme Q10 has been used primarily as an adjuvant therapy for some cardiomyopathies. However, one of the main problems in CoQ10 administration is the high variability of endogenous plasma and tissue levels, which seems to be dependent on several factors. This work explores temporal 24h and seasonal variation as well as gender and racial differences in endogenous plasma ubiquinone concentration. Coenzyme Q10 measurements (quantified by HPLC-UV) of 16 healthy volunteers were done during the daytime hours of activity beginning at 09:00h one day and ending at 09:00h the next day (13 different determinations) in two distinct months, April and October, of the year. A statistically significant circadian rhythm in plasma ubiquinone concentration that includes only the fundamental 24h component was demonstrated both in the April and October data. Furthermore, the time-point means of the ubiquinone concentration in the October study were invariably higher than those obtained in the April study. No statistically significant differences were found in CoQ10 concentration between male and female subjects, both in April and in October. In addition, racial differences were demonstrated; lower plasma ubiquinone levels were found in Caucasian compared to African subjects. However, the latter small group of subjects failed to demonstrate a circadian rhythm, neither in the April nor in the October analysis.  相似文献   

18.
Coenzyme A is required for many synthetic and degradative reactions in intermediary metabolism and is the principal acyl carrier in prokaryotic and eukaryotic cells. Coenzyme A is synthesized in five steps from pantothenate, and recently the CoaA biosynthetic genes in bacteria and human have all been identified and characterized. Coenzyme A biosynthesis in plants is not fully understood, and to date only the AtHAL3a (AtCoaC) gene of Arabidopsis thaliana has been cloned and identified as 4'-phosphopantothenoylcysteine (PPC) decarboxylase (Kupke, T., Hernández-Acosta, P., Steinbacher, S., and Culiá?ez-Macià, F. A. (2001) J. Biol. Chem. 276, 19190-19196). Here, we demonstrate the cloning of the four missing genes, purification of the enzymes, and identification of their functions. In contrast to bacterial PPC synthetases, the plant synthetase is not CTP-but ATP-dependent. The complete biosynthetic pathway from pantothenate to coenzyme A was reconstituted in vitro by adding the enzymes pantothenate kinase (AtCoaA), 4'-phosphopantothenoylcysteine synthetase (AtCoaB), 4'-phosphopantothenoylcysteine decarboxylase (AtCoaC), 4'-phosphopantetheine adenylyltransferase (AtCoaD), and dephospho-coenzyme A kinase (AtCoaE) to a mixture containing pantothenate, cysteine, ATP, dithiothreitol, and Mg2+.  相似文献   

19.
Coenzyme Q, besides its role in electron transfer reactions, may act as a radical scavenger. The effect of oxygen radicals produced by ultrasonic irradiation on the quinone ring was investigated. Aqueous solutions of a Q homologue, completely lacking the side chain, were irradiated and the modifications were spectrophotometrically followed. The experimental results show that both degradation and reduction of the benzoquinone ring took place when the irradiation was performed in water. Data obtained when ultrasonic irradiation was carried out in the presence of OH. scavengers, as formate, organic and inorganic buffers, suggest: a) the responsible species for most the ubiquinol generated by sonication appeared to be the superoxide radical b) addition reactions of OH. radicals with the aromatic ring led probably to the degradation of Coenzyme Q molecules.  相似文献   

20.
Journal of Industrial Microbiology & Biotechnology - Coenzyme Q (ubiquinone) is a redox-active isoprenylated benzoquinone commonly found in living organisms. The biosynthetic pathway for this...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号