首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
We report the use of polyelectrolyte multilayers in a stable robust surface chemistry for specific anchoring of DNA to glass. The nonspecific binding of fluorescently tagged nucleotides is suppressed down to the single-molecule level, and DNA polymerase is active on the anchored DNA template. This surface-chemistry platform can be used for single-molecule studies of DNA and DNA polymerase and may be more broadly applicable for other situations in which it is important to have specific biomolecular surface chemistry with extremely low nonspecific binding.  相似文献   

2.
DNA polymerases are essential enzymes responsible for replication and repair of DNA in all organisms. To replicate DNA with high fidelity, DNA polymerases must select the correct incoming nucleotide substrate during each cycle of nucleotide incorporation, in accordance with the templating base. When an incorrect nucleotide is sometimes inserted, the polymerase uses a separate 3'→5' exonuclease to remove the misincorporated base (proofreading). Large conformational rearrangements of the polymerase-DNA complex occur during both the nucleotide incorporation and proofreading steps. Single-molecule fluorescence spectroscopy provides a unique tool for observation of these dynamic conformational changes in real-time, without the need to synchronize a population of DNA-protein complexes.  相似文献   

3.
We present a simple technique for visualizing replication of individual DNA molecules in real time. By attaching a rolling-circle substrate to a TIRF microscope-mounted flow chamber, we are able to monitor the progression of single-DNA synthesis events and accurately measure rates and processivities of single T7 and Escherichia coli replisomes as they replicate DNA. This method allows for rapid and precise characterization of the kinetics of DNA synthesis and the effects of replication inhibitors.  相似文献   

4.
The replication of the genome requires the removal of RNA primers from the Okazaki fragments and their replacement by DNA. In prokaryotes, this process is completed by DNA polymerase I by means of strand displacement DNA synthesis and 5 '-nuclease activity. Here, we demonstrate that the strand displacement DNA synthesis is facilitated by the collective participation of Ser(769), Phe(771), and Arg(841) present in the fingers subdomain of DNA polymerase I. The steady and presteady state kinetic analysis of the properties of appropriate mutant enzymes suggest that: (a) Ser(769) and Phe(771) together are involved in the strand separation via the formation of a flap structure, and (b) Arg(841) interacts with the template strand to achieve the optimal strand separation and DNA synthesis. The amino acid residues Ser(769) and Phe(771) are constituents of the O1-helix, which together with O and O2 helices form a 3-helix bundle structure. We note that this 3-helix bundle motif also exists in prokaryotic RNA polymerase. Thus in both DNA and RNA polymerases, this motif may have been adopted to achieve the strand separation function.  相似文献   

5.
During cruciform extrusion, a DNA inverted repeat unwinds and forms a four-way junction in which two of the branches consist of hairpin structures obtained by self-pairing of the inverted repeats. Here, we use single-molecule DNA nanomanipulation to monitor in real-time cruciform extrusion and rewinding. This allows us to determine the size of the cruciform to nearly base pair accuracy and its kinetics with second-scale time resolution. We present data obtained with two different inverted repeats, one perfect and one imperfect, and extend single-molecule force spectroscopy to measure the torque dependence of cruciform extrusion and rewinding kinetics. Using mutational analysis and a simple two-state model, we find that in the transition state intermediate only the B-DNA located between the inverted repeats (and corresponding to the unpaired apical loop) is unwound, implying that initial stabilization of the four-way (or Holliday) junction is rate-limiting. We thus find that cruciform extrusion is kinetically regulated by features of the hairpin loop, while rewinding is kinetically regulated by features of the stem. These results provide mechanistic insight into cruciform extrusion and help understand the structural features that determine the relative stability of the cruciform and B-form states.  相似文献   

6.
BACKGROUND: Condensin is thought to contribute to large-scale DNA compaction during mitotic chromosome assembly. It remains unknown, however, how the complex reconfigures DNA structure at a mechanistic level. RESULTS: We have performed single-molecule DNA nanomanipulation experiments to directly measure in real-time DNA compaction by the Xenopus laevis condensin I complex. Condensin can bind to the nanomanipulated DNA in the absence of ATP, but it compacts the DNA only in the presence of hydrolyzable ATP. Linear compaction is evidenced by a reduction in the end-to-end extension of nanomanipulated DNA. The reaction results in total compaction of the DNA (i.e., zero end-to-end extension). Discrete and reversible DNA compaction events are observed in the presence of competitor DNA when the DNA is subjected to weak stretching forces (F = 0.4 picoNewton [pN]). The distribution of step sizes is broad and displays a peak at approximately 60 nm ( approximately 180 bp) as well as a long tail. This distribution is essentially unaffected by the topological state of the DNA substrate. Increasing the force to F = 10 pN drives the system toward step-wise reversal of compaction. The distribution of step sizes observed upon disruption of condensin-DNA interactions displays a sharp peak at approximately 30 nm ( approximately 90 bp) as well as a long tail stretching out to hundreds of nanometers. CONCLUSIONS: The DNA nanomanipulation assay allows us to demonstrate for the first time that condensin physically compacts DNA in an ATP-hydrolysis-dependent manner. Our results suggest that the condensin complex may induce DNA compaction by dynamically and reversibly introducing loops along the DNA.  相似文献   

7.
A zero-mode waveguide (ZMW) is a nanoscale optical waveguide driven at a frequency below its cut-off. In this mode, the electric field, instead of traveling down the axis of the conducting cavity, decays exponentially. By fabricating waveguides with sub-wavelength diameters and illuminating them with laser light, the electric field in the waveguide is confined enough to enable single-molecule optical detection at micromolar concentration [1]. Immobilizing single DNA polymerases in ZMWs and using special phosphate-fluorescently labeled dNTPs form the basis for single-molecule real-time DNA sequencing, one of the most promising next-generation sequencing platforms [2]. In this method, the polymerase replicates the sample DNA, and as it incorporates new bases into the product strand, the labeled dNTPs emit a burst of light before the phosphate is cleaved off. The sequence of colors corresponds to the DNA sequence (see Figure 1 below from Eid et al., 2009). Because the ZMW aperture’s diameter is sub-diffraction-limit, it is impossible to optically distinguish one polymerase in a ZMW from two. Having only one polymerase in each waveguide is critical to sequencing accuracy. In its present state, experimenters use diffusion to fill ZMWs with polymerases, resulting in a Poisson distribution for filling ZMWs, and consequently a theoretical limit of 36.8% of ZMWs having only one polymerase [2]. We achieve full polymerase occupancy of ZMWs by fabricating the structures on an ultrathin silicon nitride membrane and drilling a nanopore at the base of each waveguide with an ion beam. A short DNA fragment with biotin on either end is conjugated to a streptavidin and then drawn into the nanopore with a voltage bias. There is then a free biotin at the base of the ZMW. A polymerase–streptavidin complex can diffuse into the ZMW and bind to the exposed biotin. Because the nanopore is too small to fit more than one molecule, only one ZMW will bind to a biotin in the nanopore. Upon flushing the ZMW chamber, the biotin-bound polymerase will remain trapped in the pore, and only a single polymerase will remain at the base of each waveguide.   相似文献   

8.
Single-molecule DNA digestion by exonuclease III, which has 3' to 5' exonuclease activity, was analyzed using a micro-channel with two-layer laminar flow. First, a DNA-bead complex was optically trapped in one layer in the absence of exonuclease III permitted the DNA to be stretched by the laminar flow. The exonuclease III reaction was initiated by moving the trapped DNA-bead complex to another layer of flow, which contained exonuclease III. As the reaction proceeded, the fluorescently-stained DNA was observed to shorten. The process was photographed; examination of the photographs showed that the DNA molecule shortened in a linear fashion with respect to the reaction time. The digestion rate obtained from the single-molecule experiment was compared to that measured from a bulk experiment and was found to be ca. 28 times higher than the bulk digestion rate.  相似文献   

9.
DNA polymerase (pol) beta is a two-domain DNA repair enzyme that undergoes structural transitions upon binding substrates. Crystallographic structures indicate that these transitions include movement of the amino-terminal 8-kDa lyase domain relative to the 31-kDa polymerase domain. Additionally, a polymerase subdomain moves toward the nucleotide-binding pocket after nucleotide binding, resulting in critical contacts between alpha-helix N and the nascent base pair. Kinetic and structural characterization of pol beta has suggested that these conformational changes participate in stabilizing the ternary enzyme-substrate complex facilitating chemistry. To probe the microenvironment and dynamics of both the lyase domain and alpha-helix N in the polymerase domain, the single native tryptophan (Trp-325) of wild-type enzyme was replaced with alanine, and tryptophan was strategically substituted for residues in the lyase domain (F25W/W325A) or near the end of alpha-helix N (L287W/W325A). Influences of substrate on the fluorescence anisotropy decay of these single tryptophan forms of pol beta were determined. The results revealed that the segmental motion of alpha-helix N was rapid ( approximately 1 ns) and far more rapid than the step that limits chemistry. Binding of Mg(2+) and/or gapped DNA did not cause a noticeable change in the rotational correlation time or angular amplitude of tryptophan in alpha-helix N. More important, binding of a correct nucleotide significantly limited the angular range of the nanosecond motion within alpha-helix N. In contrast, the segmental motion of the 8-kDa domain was "frozen" upon DNA binding alone, and this restriction did not increase further upon nucleotide binding. The dynamics of alpha-helix N are discussed from the perspective of the "open" to "closed" conformational change of pol beta deduced from crystallography, and the results are more generally discussed in the context of reaction cycle-regulated flexibility for proteins acting as molecular motors.  相似文献   

10.
DNA polymerases occasionally insert the wrong nucleotide. For this error to become a mutation, the mispair must be extended. We report a structure of DNA polymerase beta (pol beta) with a DNA mismatch at the boundary of the polymerase active site. The structure of this complex indicates that the templating adenine of the mispair stacks with the primer terminus adenine while the templating (coding) cytosine is flipped out of the DNA helix. Soaking the crystals of the binary complex with dGTP resulted in crystals of a ternary substrate complex. In this case, the templating cytosine is observed within the DNA helix and forms Watson-Crick hydrogen bonds with the incoming dGTP. The adenine at the primer terminus has rotated into a syn-conformation to interact with the opposite adenine in a planar configuration. Yet, the 3'-hydroxyl on the primer terminus is out of position for efficient nucleotide insertion.  相似文献   

11.
Fleck O  Schär P 《Current biology : CB》2004,14(10):R389-R391
DNA synthesis on a damaged template requires tolerant DNA polymerases. Crystallographic analysis has captured a Y-family polymerase synthesizing across an abasic site, providing insight into the mechanisms of DNA damage tolerance and mutation.  相似文献   

12.
Fan HF 《Nucleic acids research》2012,40(13):6208-6222
Tyrosine family recombinases (YRs) are widely utilized in genome engineering systems because they can easily direct DNA rearrangement. Cre recombinases, one of the most commonly used types of YRs, catalyze site-specific recombination between two loxP sites without the need for high-energy cofactors, other accessory proteins or a specific DNA target sequence between the loxP sites. Previous structural, analytical ultracentrifuge and electrophoretic analyses have provided details of the reaction kinetics and mechanisms of Cre recombinase activity; whether there are reaction intermediates or side pathways involved has been left unaddressed. Using tethered particle motion (TPM), the Cre-mediated site-specific recombination process has been delineated, from beginning to end, at the single-molecule level, including the formation of abortive complexes and wayward complexes blocking inactive nucleoprotein complexes from entering the recombination process. Reversibility in the strand-cleavage/-ligation process and the formation of a thermally stable Holliday junction intermediate were observed within the Cre-mediated site-specific recombination process. Rate constants for each elementary step, which explain the overall reaction outcomes under various conditions, were determined. Taking the findings of this study together, they demonstrate the potential of single-molecule methodology as an alternative approach for exploring reaction mechanisms in detail.  相似文献   

13.
Kinetic studies on DNA polymerase   总被引:1,自引:0,他引:1  
  相似文献   

14.
Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase   总被引:80,自引:0,他引:80  
K R Tindall  T A Kunkel 《Biochemistry》1988,27(16):6008-6013
We have determined the fidelity of in vitro DNA synthesis catalyzed at high temperature by the DNA polymerase from the thermophilic bacterium Thermus aquaticus. Using a DNA substrate that contains a 3'-OH terminal mismatch, we demonstrate that the purified polymerase lacks detectable exonucleolytic proofreading activity. The fidelity of the Taq polymerase was measured by two assays which score errors produced during in vitro DNA synthesis of the lacZ alpha complementation gene in M13mp2 DNA. In both assays, the Taq polymerase produces single-base substitution errors at a rate of 1 for each 9000 nucleotides polymerized. Frameshift errors are also produced, at a frequency of 1/41,000. These results are discussed in relation to the effects of high temperature on fidelity and the use of the Taq DNA polymerase as a reagent for the in vitro amplification of DNA by the polymerase chain reaction.  相似文献   

15.
16.
A panel of murine hybridoma cell lines which produce antibodies against polypeptides present in human placental DNA polymerase delta preparations was developed. Eight of these antibodies were characterized by virtue of their ability to inhibit DNA polymerase delta activity and immunoblot the 170-kDa catalytic polypeptide. Six of these eight antibodies inhibit DNA polymerase delta but not DNA polymerase alpha, showing that the two proteins are distinct. However, the other two monoclonal antibodies inhibited both DNA polymerase delta and alpha activities, providing the first evidence that these two proteins have a structural relationship. In addition to antibodies against the catalytic polypeptide we also identified 11 antibodies which recognize 120-, 100-, 88-, 75-, 62-, 36-, and 22-kDa polypeptides in DNA polymerase delta preparations, suggesting that these proteins might be part of a replication complex. The antibody to the 36-kDa polypeptide was shown to be directed against proliferating cell nuclear antigen/cyclin. These antibodies should prove useful for studies aimed at distinguishing between DNA polymerases alpha and delta and for the investigation of the functional roles of DNA polymerase delta polypeptides.  相似文献   

17.
18.
DNA polymerase lambda is a member of the X family of polymerases that is implicated in non-homologous end-joining of double-strand breaks in DNA and in base excision repair of DNA damage. To better understand the roles of DNA polymerase lambda in these repair pathways, here we review its structure and biochemical properties, with emphasis on its gap-filling polymerization activity, its dRP lyase activity and its unusual DNA synthetic (in)fidelity.  相似文献   

19.
Low-fidelity DNA synthesis by human DNA polymerase theta   总被引:1,自引:1,他引:1  
Human DNA polymerase theta (pol θ or POLQ) is a proofreading-deficient family A enzyme implicated in translesion synthesis (TLS) and perhaps in somatic hypermutation (SHM) of immunoglobulin genes. These proposed functions and kinetic studies imply that pol θ may synthesize DNA with low fidelity. Here, we show that when copying undamaged DNA, pol θ generates single base errors at rates 10- to more than 100-fold higher than for other family A members. Pol θ adds single nucleotides to homopolymeric runs at particularly high rates, exceeding 1% in certain sequence contexts, and generates single base substitutions at an average rate of 2.4 × 10−3, comparable to inaccurate family Y human pol κ (5.8 × 10−3) also implicated in TLS. Like pol κ, pol θ is processive, implying that it may be tightly regulated to avoid deleterious mutagenesis. Pol θ also generates certain base substitutions at high rates within sequence contexts similar to those inferred to be copied by pol θ during SHM of immunoglobulin genes in mice. Thus, pol θ is an exception among family A polymerases, and its low fidelity is consistent with its proposed roles in TLS and SHM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号