首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
High-pressure hydrocephalus: a novel analytical modeling approach   总被引:1,自引:0,他引:1  
Hydrocephalus is an abnormal accumulation of cerebrospinal fluid (CSF) within ventricles and subarachnoid space (SAS) as a result of disturbances in secretion or absorption procedures. It is believed that arachnoid villi cells, which are microscopic projections of pia-arachnoid mater that extend into venous channels in sagittal sinus, are the main sites for CSF absorption, but it is tempting to speculate that a significant portion of CSF is removed from the SAS by nasal lymphatic vessels around olfactory nerve. Thus, in this paper, we propose an analytical model of CSF-lymphatic-blood circulation, in which these two output pathways for CSF absorption have been considered. Mathematical relations governing the pressures in different interacting compartments of the brain are considered. In addition, for increasing the similarity of our model to the physiological conditions, the bulk flow mechanism, which is supposed to occur during CSF absorption, has been considered in our model. We used our model to simulate hydrocephalus. The results indicate that the lymphatic disorders have more considerable effect in decreasing CSF absorption, compared to the disturbances in arachnoid villi cells. Based on our modeling, we believe that disorders in lymphatic pathway may be a cause of high-pressure hydrocephalus. Surely experimental studies are required to validate our hypothesis.  相似文献   

5.
6.
7.
Slits are large molecular and extracellular glycoproteins that may function as chemorepellents in axon guidance and neural cell migration. The heterogeneity of the mRNA for slit has been described. Its variants indicate considerable potential for alternative splicing, resulting in the generation of multiple protein isoforms. We examined the regions in which these isoforms are expressed, and identified the highest expression of a splicing product for slit1 in rat brain rather than in other organs. The splicing product, Slit1alpha, arises through alternative splicing at the C-terminus of Slit1, causing defects in the cysteine knot domain. We show that slit1alpha exists in the hippocampus and cerebral cortex in rat brain by in situ hybridization, and that it acts as a chemorepellent in olfactory bulb axon guidance in vitro. These findings suggest that Slit1alpha is an active Slit1 protein specific in the vertebrate nervous system.  相似文献   

8.
The structures of three forms of mouse myelin-associated glycoprotein mRNAs were determined from full-length cDNA clones. Two forms of mRNAs have been reported to be different by alternate inclusion of exon 2 and 12 in rat brain. One of the three forms of clones obtained here appeared to be a novel mRNA which lacked both the exon 2 and 12 portions, although others were identical splicing patterns to those of rat. Northern blot analysis using specific probes to mRNAs with or without the exon 2 portion in normal and quaking mouse confirmed that the splicing of exon 2 and 12 occurred independently.  相似文献   

9.
Alternative splicing is generally accepted as a mechanism that explains the discrepancy between the number of genes and proteins. We used peptide mass fingerprinting with a theoretical database and scoring method to discover and identify alternative splicing isoforms. Our theoretical database was built using published alternative splicing databases such as ECgene, H-DBAS, and TISA. According to our theoretical database of 190,529 isoforms, 37% of human genes have multiple isoforms. The isoforms produced from a gene partially share common peptide fragments because they have common exons, making it difficult to distinguish isoforms. Therefore, we developed a new method that effectively distinguishes a true isoform among multiple isoforms in a gene. In order to evaluate our algorithm, we made test sets for 4226 protein isoforms extracted from our theoretical database randomly. Consequently, 94% of true isoforms were identified by our scoring algorithm.  相似文献   

10.
11.
In the past years, identification of alternative splicing (AS) variants has been gaining momentum. We developed AVATAR, a database for documenting AS using 5,469,433 human EST sequences and 26,159 human mRNA sequences. AVATAR contains 12000 alternative splicing sites identified by mapping ESTs and mRNAs with the whole human genome sequence. AVATAR also contains AS information for 6 eukaryotes. We mapped EST alignment information into a graph model where exons and introns are represented with vertices and edges, respectively. AVATAR can be queried using, (1) gene names, (2) number of identified AS events in a gene, (3) minimal number of ESTs supporting a splicing site, etc. as search parameters. The system provides visualized AS information for queried genes.

Availability  相似文献   


12.
13.
Xu Q  Modrek B  Lee C 《Nucleic acids research》2002,30(17):3754-3766
We have developed an automated method for discovering tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs). Using this approach, we have identified 667 tissue-specific alternative splice forms of human genes. We validated our muscle-specific and brain-specific splice forms for known genes. A high fraction (8/10) were reported to have a matching tissue specificity by independent studies in the published literature. The number of tissue-specific alternative splice forms is highest in brain, while eye-retina, muscle, skin, testis and lymph have the greatest enrichment of tissue-specific splicing. Overall, 10-30% of human alternatively spliced genes in our data show evidence of tissue-specific splice forms. Seventy-eight percent of our tissue-specific alternative splices appear to be novel discoveries. We present bioinformatics analysis of several tissue-specific splice forms, including automated protein isoform sequence and domain prediction, showing how our data can provide valuable insights into gene function in different tissues. For example, we have discovered a novel kidney-specific alternative splice form of the WNK1 gene, which appears to specifically disrupt its N-terminal kinase domain and may play a role in PHAII hypertension. Our database greatly expands knowledge of tissue-specific alternative splicing and provides a comprehensive dataset for investigating its functional roles and regulation in different human tissues.  相似文献   

14.
15.
16.
Alternative splicing plays an important role in the control of apoptosis. A number of genes related to apoptosis undergo alternative splicing. Among them, the apoptotic regulator Bcl-x produces two major isoforms, Bcl-xL and Bcl-xS, through the alternative splicing of exon 2 in its pre-mRNA. These isoforms have antagonistic function in apoptotic pathway; Bcl-xL is pro-apoptotic, while Bcl-xS is anti-apoptotic. The balanced ratio of two isoforms is important for cell survival. However, regulatory mechanisms of Bcl-x splicing remain poorly understood. Using a mini-gene system, we have found that a 105 nt exonic region (E3b) located within exon 3 affects exon 2 splicing in the Bcl-x gene. Further deletion and mutagenesis studies demonstrate that this 105 nt sequence contains various functional elements which promote skipping of exon 2b. One of these elements forms a stem-loop structure that stimulates skipping of exon 2b. Furthermore our results prove that the stem-loop structure functions as an enhancer in general pre-mRNA splicing. We conclude that we have identified a cis-regulatory element in exon 3 that affects splicing of exon 2 in the Bcl-x gene. This element could be potentially targeted to alter the ratio of Bcl-xL and Bcl-xS for treatment of tumors through an apoptotic pathway.  相似文献   

17.
Graveley BR 《Cell》2002,109(4):409-412
Alternative splicing is an important means of regulating the expression of eukaryotic genes and enhancing protein diversity. A detailed examination of the Drosophila Sex-lethal gene has led to two significant discoveries-the role of the splicing factor SPF45 in defining the site of exon ligation, and that alternative splicing can be regulated at the second step.  相似文献   

18.
19.
20.
Understanding alternative splicing: towards a cellular code   总被引:4,自引:0,他引:4  
In violation of the 'one gene, one polypeptide' rule, alternative splicing allows individual genes to produce multiple protein isoforms - thereby playing a central part in generating complex proteomes. Alternative splicing also has a largely hidden function in quantitative gene control, by targeting RNAs for nonsense-mediated decay. Traditional gene-by-gene investigations of alternative splicing mechanisms are now being complemented by global approaches. These promise to reveal details of the nature and operation of cellular codes that are constituted by combinations of regulatory elements in pre-mRNA substrates and by cellular complements of splicing regulators, which together determine regulated splicing pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号