首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
DNA (cytosine-5) methyltransferase 1 (DNMT1) is essential for mammalian development and maintenance of DNA methylation following DNA replication in cells. The DNA methylation process generates S-adenosyl-l-homocysteine, a strong inhibitor of DNMT1. Here we report that S-adenosylhomocysteine hydrolase (SAHH/AHCY), the only mammalian enzyme capable of hydrolyzing S-adenosyl-l-homocysteine binds to DNMT1 during DNA replication. SAHH enhances DNMT1 activity in vitro, and its overexpression in mammalian cells led to hypermethylation of the genome, whereas its inhibition by adenosine periodate or siRNA-mediated knockdown resulted in hypomethylation of the genome. Hypermethylation was consistent in both gene bodies and repetitive DNA elements leading to aberrant gene regulation. Cells overexpressing SAHH specifically up-regulated metabolic pathway genes and down-regulated PPAR and MAPK signaling pathways genes. Therefore, we suggest that alteration of SAHH level affects global DNA methylation levels and gene expression.  相似文献   

4.
So AY  Jung JW  Lee S  Kim HS  Kang KS 《PloS one》2011,6(5):e19503
Epigenetic regulation of gene expression is well known mechanism that regulates cellular senescence of cancer cells. Here we show that inhibition of DNA methyltransferases (DNMTs) with 5-azacytidine (5-AzaC) or with specific small interfering RNA (siRNA) against DNMT1 and 3b induced the cellular senescence of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) and increased p16(INK4A) and p21(CIP1/WAF1) expression. DNMT inhibition changed histone marks into the active forms and decreased the methylation of CpG islands in the p16(INK4A) and p21(CIP1/WAF1) promoter regions. Enrichment of EZH2, the key factor that methylates histone H3 lysine 9 and 27 residues, was decreased on the p16(INK4A) and p21(CIP1/WAF1) promoter regions. We found that DNMT inhibition decreased expression levels of Polycomb-group (PcG) proteins and increased expression of microRNAs (miRNAs), which target PcG proteins. Decreased CpG island methylation and increased levels of active histone marks at genomic regions encoding miRNAs were observed after 5-AzaC treatment. Taken together, DNMTs have a critical role in regulating the cellular senescence of hUCB-MSCs through controlling not only the DNA methylation status but also active/inactive histone marks at genomic regions of PcG-targeting miRNAs and p16(INK4A) and p21(CIP1/WAF1) promoter regions.  相似文献   

5.
DNA methyltransferase 1 (DNMT1) is an important component of the epigenetic machinery and is responsible for copying DNA methylation patterns during cell division. Coordination of DNA methylation and DNA replication is critical for maintaining epigenetic programming. Knockdown of DNMT1 leads to inhibition of DNA replication, but the mechanism has been unclear. Here we show that depletion of DNMT1 with either antisense or small interfering RNA (siRNA) specific to DNMT1 activates a cascade of genotoxic stress checkpoint proteins, resulting in phosphorylation of checkpoint kinases 1 and 2 (Chk1 and -2), gammaH2AX focus formation, and cell division control protein 25a (CDC25a) degradation, in an ataxia telangiectasia mutated-Rad3-related (ATR)-dependent manner. siRNA knockdown of ATR blocks the response to DNMT1 depletion; DNA synthesis continues in the absence of DNMT1, resulting in global hypomethylation. Similarly, the response to DNMT1 knockdown is significantly attenuated in human mutant ATR fibroblast cells from a Seckel syndrome patient. This response is sensitive to DNMT1 depletion, independent of the catalytic domain of DNMT1, as indicated by abolition of the response with ectopic expression of either DNMT1 or DNMT1 with the catalytic domain deleted. There is no response to short-term treatment with 5-aza-deoxycytidine (5-aza-CdR), which causes demethylation by trapping DNMT1 in 5-aza-CdR-containing DNA but does not cause disappearance of DNMT1 from the nucleus. Our data are consistent with the hypothesis that removal of DNMT1 from replication forks is the trigger for this response.  相似文献   

6.
DNA methylation plays a central role in the epigenetic regulation of gene expression in vertebrates. Genetic and biochemical data indicated that DNA methyltransferase 1 (Dnmt1) is indispensable for the maintenance of DNA methylation patterns in mice, but targeting of the DNMT1 locus in human HCT116 tumor cells had only minor effects on genomic methylation and cell viability. In this study, we identified an alternative splicing in these cells that bypasses the disrupting selective marker and results in a catalytically active DNMT1 protein lacking the proliferating cell nuclear antigen-binding domain required for association with the replication machinery. Using a mechanism-based trapping assay, we show that this truncated DNMT1 protein displays only twofold reduced postreplicative DNA methylation maintenance activity in vivo. RNA interference-mediated knockdown of this truncated DNMT1 results in global genomic hypomethylation and cell death. These results indicate that DNMT1 is essential in mouse and human cells, but direct coupling of the replication of genetic and epigenetic information is not strictly required.  相似文献   

7.
8.
High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning.It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation.DNA methylation is established and maintained by DNA methyltransferases(DNMTs),therefore,it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs.Since DNA methylation can strongly inhibit gene expression,aberrant DNA methylation of DNMT genes may disturb gene expression.But presently,it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos.In our study,we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a,Dnmt3b,Dnmtl and Dnmt2 in four aborted bovine clones.Using bisulfite sequencing method,we found that 3 out of 4 aborted bovine clones(AF1,AF2 and AF3)showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b.indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed.However,the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF)fetuses.Besides,we found that tle 5'regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults.IVF fetuses,sperm and aborted clones.Together,our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.  相似文献   

9.
《Epigenetics》2013,8(1):119-128
It was previously demonstrated that miR-199a was downregulated in testicular germ cell tumor (TGCT), probably due to hypermethylation of its promoter. Further study found that re-expression of miR-199a in testicular cancer cells (NT2) led to suppression of cell growth, cancer migration, invasion and metastasis. More detailed analyses showed that these properties of miR-199a could be assigned to miR-199a-5p, one of its two derivatives. The biological role of the other derivative, miR-199a-3p in TGCT, remains largely uncharacterized. In this report, we identified DNA (cytosine-5)-methyltransferase 3A (DNMT3A), the de novo methyltransferase, as a direct target of miR-199a-3p using a 3′-UTR reporter assay. Transient expression of miR-199a-3p in NT2 cells led to decrease, while knocking down of miR-199a-3p in a normal human testicular cell line (HT) led to elevation, of DNMT3A2 (DNMT3A gene isoform 2) mRNA and protein levels. In clinical samples, DNMT3A2 was significantly overexpressed in malignant testicular tumor, and the expression of DNMT3A2 was inversely correlated with the expression of miR-199a-3p. However, DNMT3A did not affect miR-199a expression in NT2 cells. Further characterization of miR-199a-3p revealed that it negatively regulated DNA methylation, partly through targeting DNMT3A. Overexpression of miR-199a-3p restored the expression of APC and MGMT tumor-suppressor genes in NT2 cells by affecting DNA methylation of their promoter regions. Our studies demonstrated the deregulation of miR-199a-3p expression in TGCT may provide novel mechanistic insights into TGCT carcinogenesis and suggested a potentially therapeutic use of synthetic miR-199a-3p oligonucleotides as effective hypomethylating compounds in the treatment of TGCT.  相似文献   

10.
Rengaraj D  Lee BR  Lee SI  Seo HW  Han JY 《PloS one》2011,6(5):e19524
DNA methylation is widespread in most species, from bacteria to mammals, and is crucial for genomic imprinting, gene expression, and embryogenesis. DNA methylation occurs via two major classes of enzymatic reactions: maintenance-type methylation catalyzed by DNA (cytosine-5-)-methyltransferase (DNMT) 1, and de novo methylation catalyzed by DNMT 3 alpha (DNMT3A) and -beta (DNMT3B). The expression pattern and regulation of DNMT genes in primordial germ cells (PGCs) and germ line cells has not been sufficiently established in birds. Therefore, we employed bioinformatics, RT-PCR, real-time PCR, and in situ hybridization analyses to examine the structural conservation and conserved expression patterns of chicken DNMT family genes. We further examined the regulation of a candidate de novo DNA methyltransferase gene, cDNMT3B by cotransfection of cDNMT3B 3'UTR- and cDNMT3B 3'UTR-specific miRNAs through a dual fluorescence reporter assay. All cDNMT family members were differentially detected during early embryonic development. Of interest, cDNMT3B expression was highly detected in early embryos and in PGCs. During germ line development and sexual maturation, cDNMT3B expression was reestablished in a female germ cell-specific manner. In the dual fluorescence reporter assay, cDNMT3B expression was significantly downregulated by four miRNAs: gga-miR-15c (25.82%), gga-miR-29b (30.01%), gga-miR-383 (30.0%), and gga-miR-222 (31.28%). Our data highlight the structural conservation and conserved expression patterns of chicken DNMTs. The miRNAs investigated in this study may induce downregulation of gene expression in chicken PGCs and germ cells.  相似文献   

11.
12.
13.
Covalent modification of DNA regulates memory formation   总被引:10,自引:0,他引:10  
Miller CA  Sweatt JD 《Neuron》2007,53(6):857-869
  相似文献   

14.
15.
miRNAs have emerged as crucial regulators in the regulation of development as well as human diseases, especially tumorigenesis. The aims of this study are to evaluate miR-30b-5p expression pattern and mechanism in gastric carcinogenesis due to which remains to be determined. Expression of miR-30b-5p was analyzed in 51 gastric cancer cases and 4 cell lines by qRT-PCR. The effect of DNA methylation on miR-30b-5p expression was assessed by MSP and BGS. In order to know whether DNMT1 increased miR-30b-5p promoter methylation, DNMT1 was depleted in cell lines AGS and BGC-823. The role of miR-30b-5p on cell migration was evaluated by wound healing assays. Decreased expression of miR-30b-5p was found in gastric cancer samples. In tumor, the expression level of miR-30b-5p was profound correlated with lymph node metastasis (P = 0.019). The level of miR-30b-5p may be restored by DNA demethylation and DNMT1 induced miR-30b-5p promoter methylation. In vitro functional assays implied that enforced miR-30b-5p expression affected cell migration, consistent with tissues analysis. Our findings uncovered that miR-30b-5p is significantly diminished in gastric cancer tissues, providing the first insight into the epigenetic mechanism of miR-30b-5p down-regulation, induced by DNMT1, and the role of miR-30b-5p in gastric cancer carcinogenesis. Overexpression of miR-30b-5p inhibited cell migration. Thus, miR-30b-5p may represent a potential therapeutic target for gastric cancer therapy.  相似文献   

16.
17.
18.
19.
20.
《Epigenetics》2013,8(5):427-443
Immunodeficiency, Centromeric region instability, Facial anomalies (ICF; OMIM #242860) syndrome, due to mutations in the DNMT3B gene, is characterized by inheritance of aberrant patterns of DNA methylation and heterochromatin defects. Patients show variable agammaglobulinemia and a reduced number of T cells, making them prone to infections and death before adulthood. Other variable symptoms include facial dysmorphism, growth and mental retardation. Despite the recent advances in identifying the dysregulated genes, the molecular mechanisms, which underlie the altered gene expression causing ICF phenotype complexity, are not well understood. Held the recently-shown tight correlation between epigenetics and microRNAs (miRNAs), we searched for miRNAs regulated by DNMT3B activity, comparing cell lines from ICF patients with those from healthy individuals. We observe that eighty-nine miRNAs, some of which involved in immune function, development and neurogenesis, are dysregulated in ICF (LCLs) compared to wild-type cells. Significant DNA hypomethylation of miRNA CpG islands was not observed in cases of miRNA up-regulation in ICF cells, suggesting a more subtle effect of DNMT3B deficiency on their regulation; however, a modification of histone marks, especially H3K27 and H3K4 trimethylation, and H4 acetylation, was observed concomitantly with changes in microRNA expression. Functional correlation between miRNA and mRNA expression of their targets allow us to suppose a regulation either at mRNA level or at protein level. These results provide a better understanding of how DNA methylation and histone code interact to regulate the class of microRNA genes and enable us to predict molecular events possibly contributing to ICF condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号