首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
The goose parvovirus (GPV) Rep 1 and Rep 2 proteins are encoded by P9-generated mRNAs that are either unspliced or spliced within the rep gene region, respectively. These mRNAs are present in an approximately equal ratio. The translation of Rep 1 was initiated from the first AUG in unspliced P9-generated mRNA; however, this AUG was bypassed in spliced P9-generated RNA and Rep 2 translation initiated predominately at the next initiating AUG downstream. We show that the choice of the site of initiation of translation of GPV Rep-encoding mRNAs is governed both by the splicing process itself and by the nature of the excised intron.Goose parvovirus (GPV) has identical hairpin termini, is most similar in both nucleotide sequence and protein homology to adeno-associated virus 2 (AAV2), and has been classified as a member of the Dependovirus genus (10-12); however, unlike the AAVs, GPV can replicate efficiently without the aid of a helper virus (12). The RNA expression profile of GPV is a surprising hybrid of features of the Parvovirus and Dependovirus genera of the Parvovirinae (7). Similar to the Dependovirus AAV5, RNAs transcribed from the GPV upstream P9 promoter, which encode the viral Rep protein(s), are polyadenylated at high efficiency at a polyadenylation [(pA)p] site located within the small intron in the center of the genome (7). No promoter analogous to the Dependovirus P19 promoter has been detected; however, similar to minute virus of mice (MVM) and other members of the Parvovirus genus, approximately half of the pre-mRNAs generated from the P9 promoter are additionally spliced within the putative GPV Rep coding region between a donor site located at nucleotide (nt) 814 and an acceptor site at nt 1198 (7). The GPV RNA profile has been shown to be the same in both human 293T and goose CGBQ cells (7). Thus, the mechanism that GPV uses for the expression of its nonstructural gene is more like that used by members of the autonomous Parvovirus group.In this report, we describe the coding strategy for the nonstructural proteins of GPV. We demonstrate that the large Rep 1 protein is encoded uninterruptedly in open reading frame 1 (ORF 1) from the unspliced P9-generated mRNA using an initiating AUG codon at nt 537. The smaller Rep 2 protein is encoded by the spliced P9-generated mRNA; it initiates in ORF 2 at an AUG at nt 650 and continues in ORF 1 after the splice. Strikingly, the first upstream AUG at nt 537 is not utilized in spliced P9-generated mRNA. We show that the choice of initiation site is governed by the splicing process itself and by the nature of the excised intron.  相似文献   

17.
18.
Chromatin-enriched noncoding RNAs (ncRNAs) have emerged as key molecules in epigenetic processes by interacting with chromatin-associated proteins. Recently, protein-coding mRNA genes have been reported to be chromatin-tethered, similar with ncRNA. However, very little is known about whether chromatin-enriched mRNA is involved in the chromatin modification process. Here, we comprehensively examined chromatin-enriched RNA in squamous cell carcinoma (SQCC) cells by RNA subcellular localization analysis, which was a combination of RNA fractionation and RNA-seq. We identified 11 mRNAs as highly chromatin-enriched RNAs. Among these, we focused on the dentin matrix protein-1 (DMP-1) gene because its expression in SQCC cells has not been reported. Furthermore, we clarified that DMP-1 mRNA was retained in chromatin in its unspliced form in SQCC in vitro and in vivo. As the inhibition of the unspliced DMP-1 mRNA (unspDMP-1) expression resulted in decreased cellular proliferation in SQCC cells, we performed ChIP-qPCR to identify cell cycle-related genes whose expression was epigenetically modified by unspDMP-1, and found that the CDKN1B promoter became active in SQCC cells by inhibiting unspDMP-1 expression. This result was further validated by the increased CDKN1B gene expression in the cells treated with siRNA for unspDMP-1 and by restoration of the decreased cellular proliferation rate by simultaneously inhibiting CDKN1B expression in SQCC cells. Further, to examine whether unspDMP-1 was able to associate with the CDKN1B promoter region, SQCC cells stably expressing PP7-mCherry fusion protein were transiently transfected with the unspDMP-1 fused to 24 repeats of the PP7 RNA stem loop (unspDMP-1-24xPP7) and we found that unspDMP-1-24xPP7 was efficiently precipitated with the antibody against mCherry and was significantly enriched in the CDKN1B promoter region. Thus, unspDMP-1 is a novel chromatin-enriched RNA that epigenetically regulates cellular proliferation of SQCC.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号