首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of morphology》2017,278(5):718-733
Tentacles are the main food‐gathering organs of bryozoans. The most common design is a hollow tube of extracellular matrix (ECM), covered with ten columns of epithelial cells on the outside, and a coelothelium on the inside. Nerves follow the ECM, going between the bases of some epidermal cells. The tentacle musculature includes two bundles formed by myoepithelial cells of the coelothelium. The tentacles of freshwater (phylactolaemate) bryozoans, however, differ somewhat in structure from those of marine bryozoans. Here, we describe the tentacles of three species of phylactolaemates, comparing them to gymnolaemates and stenolaemates. Phylactolaemate tentacles tend to be longer, and with more voluminous coeloms. The composition of the frontal cell row and the number of frontal nerves is variable in freshwater bryozoans, but constant in marine groups. Abfrontal cells form a continuous row in Phylactolaemata, but occur intermittently in other two classes. Phylactolaemata lack the microvillar cuticle reported in Gymnolaemata. Abfrontal sensory tufts are always composed of pairs of mono‐ and/or biciliated cells. This arrangement differs from individual abfrontal ciliary cells of other bryozoans: monociliated in Stenolaemata and monociliated and multiciliated ones in Gymnolaemata. In all three groups, however, ciliated abfrontal cells probably serve as mechanoreceptors. We confirm previously described phylactolemate traits: an unusual arrangement of two‐layered coelothelium lining the lateral sides of the tentacle and oral slits in the intertentacular membrane. As previously reported, tentacle movements involved in feeding differ between bryozoan groups, with phylactolaemates tending to have slower movements than both gymnolaemates and stenolaemates, and a narrower behavioral repertoire than gymnolaemates. The morphological and ultrastructural differences between the freshwater species we studied and marine bryozoans may be related to these functional differences. Muscle organization, tentacle and coelom size, and degree of confluence between tentacle and lophophore coeloms probably account for much of the observed behavioral variability.  相似文献   

2.
Two principally different wall types occur in the bryozoan colony: Exterior walls delimiting the super-individual, the colony, against its surroundings and interior walls dividing the body cavity of the colony thus defined into units which develop into sub-individuals, the zooids. In the gymnolaemate bryozoans generally, whether uniserial or multiserial, the longitudinal zooid walls are exterior, the transverse (proximal and distal) zooid walls interior ones. The radiating zooid rows grow apically to form “tubes” each surrounded by exterior walls but subdivided by interior (transverse) walls. The stenolaemate bryozoans show a contrasting mode of growth in which the colony swells in the distal direction to form one confluent cavity surrounded by an exterior wall but internally subdivided into zooids by interior walls. In the otherwise typical gymnolaemate Parasmittina trispinosa the growing edge is composed of a series of “giant buds” each surrounded by exterior walls on its lateral, frontal, basal and distal sides and forming an undifferentiated chamber usually 2–3 times as broad and 3 or more times as long as the final zooid. Its lumen is subdivided by interior walls into zooids 2–3, occasionally 4, in breadth. This type of zooid formation is therefore similar to the “common bud” or, better-named, “multizooidal budding” characteristic of the stenoleamates but has certainly evolved independently as a special modification of the usual gymnolaemate budding.  相似文献   

3.
Riisgård, H.U., Okamura, B. and Funch, P. 2009. Particle capture in ciliary filter‐feeding gymnolaemate and phylactolaemate bryozoans – a comparative study. —Acta Zoologica (Stockholm) 91 : 416–425. We studied particle capture using video‐microscopy in two gymnolaemates, the marine cheilostome Electra pilosa and the freshwater ctenostome Paludicella articulata, and three phylactolaemates, Fredericella sultana with a circular funnel‐shaped lophophore, and Cristatella mucedo and Lophophus crystallinus, both with a horseshoe‐shaped lophophore. The video‐microscope observations along with studies of lophophore morphology and ultrastructure indicated that phylactolaemate and gymnolaemate bryozoans with a diversity of lophophore shapes rely on the same basic structures and mechanisms for particle capture. Our study also demonstrates that essential features of the particle capture process resemble one another in bryozoans, brachiopods and phoronids.  相似文献   

4.
The evolution of bryozoan female gonopores (the supraneural coelomopore (SNP) and the intertentacular organ (ITO)) is considered in the light of two alternative hypotheses. In the first hypothesis it is proposed that the ITO originated from the shortening and fusion of two tentacles possessing terminal pore(s), with further transformation into a simple pore. In the alternative hypothesis it is suggested that the ITO evolved from a coelomopore with a contribution from the basal parts of two disto-medial tentacles in an ancestor. Favouring the second hypothesis, in this paper we present a hypothetical scenario, according to which the earliest gymnolaemate bryozoans with uniserial growth and a broadcasting reproductive pattern possessed the supraneural coelomopore (SNP). This could serve both as a female gonopore and as a conduit for sperm entry. Evolution of large colonies of closely packed zooids led to development of the tube-like intertentacular organ (ITO) that is formed by epithelial proliferation of the basal parts of two dorso-medial tentacles. This prevented egg swallowing in the situation when water exchange was hampered within the large colony. The ITO independently evolved in both ctenostome and cheilostome gymnolaemates when multiserial colonies appeared. Evolution of brooding in species with colonies of closely packed zooids led to reduction of the ITO, except for the cheilostomes Tendra and Thalamoporella that acquired brooding independently. A rudimentary ITO also “survived” in two ctenostomes with the “mixed” type of brooding. An alternative, analogous organ—the ovipositor—has evolved in the cheilostome taxon Schizoporella.  相似文献   

5.
Abstract. SEM studies of 21 species of marine bryozoans demonstrated that the abfrontal side of the tentacles bears a row of mono- or multiciliated cells, which are presumably sensory. In stenolaemates, the abfrontal cells, as well as the cells at the tentacle tips and the laterofrontal cells, are monociliated. In the 17 gymnolaemate species studied, each tentacle tip bears at least 3 multiciliated cells, each with a tuft of 5–7 stiff cilia of various lengths. On the abfrontal tentacle surface, mono- and multiciliated cells alternate, but all species studied have multiciliated cells at the base and the tip of each tentacle. In live animals, single cilia perform occasional flicks, whereas the tufts of 7–15 cilia on the multiciliated cells are immotile. Length and number of abfrontal cilia vary between species. Two types of multiciliated, putative sensory organs were found on the introvert of some gymnolaemates. One has an apical knob surrounded by a ring of cilia; the other has an apical tuft of cilia. The ultrastructure of the sensory cells of tentacles and introvert was studied in Rhamphostomella ovata . Our observations on both fixed and living material all suggest that these cells are primitive mechanoreceptors. The few species lacking ciliary structures on the introvert have long proximal ciliary tufts on the abfrontal tentacle surface.  相似文献   

6.
Based on morphological evidence, Bryozoa together with Phoronida and Brachiopoda are traditionally combined in the group Lophophorata, although this view has been recently challenged by molecular studies. The core of the concept lies in the presence of the lophophore as well as the nature and arrangement of the body cavities. Bryozoa are the least known in this respect. Here, we focused on the fine structure of the body cavity in 12 bryozoan species: 6 gymnolaemates, 3 stenolaemates and 3 phylactolaemates. In gymnolaemates, the complete epithelial lining of the body cavity is restricted to the lophophore, gut walls, and tentacle sheath. By contrast, the cystid walls are composed only of the ectocyst-producing epidermis without a coelothelium, or an underlying extracellular matrix; only the storage cells and cells of the funicular system contact the epidermis. The nature of the main body cavity in gymnolaemates is unique and may be considered as a secondarily modified coelom. In cyclostomes, both the lophophoral and endosaccal cavities are completely lined with coelothelium, while the exosaccal cavity only has the epidermis along the cystid wall. In gymnolaemates, the lophophore and trunk cavities are divided by an incomplete septum and communicate through two pores. In cyclostomes, the septum has a similar location, but no openings. In Phylactolaemata, the body cavity is undivided: the lophophore and trunk coeloms merge at the bases of the lophophore arms, the epistome cavity joins the trunk, and the forked canal opens into the arm coelom. The coelomic lining of the body is complete except for the epistome, lophophoral arms, and the basal portions of the tentacles, where the cells do not interlock perfectly (this design probably facilitates the ammonia excretion). The observed partitioning of the body cavity in bryozoans differs from that in phoronids and brachiopods, and contradicts the Lophophorata concept.  相似文献   

7.
Abstract. In contrast to marine bryozoans, the lophophore structure and the ciliary filter‐feeding mechanism in freshwater bryozoans have so far been only poorly described. Specimens of the phylactolaemate bryozoan Plumatella repens were studied to clarify the tentacular ciliary structures and the particle capture mechanism. Scanning electron microscopy revealed that the tentacles of the lophophore have a frontal band of densely packed cilia, and on each side a zigzag row of laterofrontal cilia and a band of lateral cilia. Phalloidin‐linked fluorescent dye showed no sign of muscular tissue within the tentacles. Video microscopy was used to describe basic characteristics of particle capture. Suspended particles in the incoming water flow, set up by the lateral ‘pump’ cilia on the tentacles, approach the tentacles with a velocity of 1–2 mm s‐1. Near the tentacles, the particles are stopped by the stiff sensory laterofrontal cilia acting as a mechanical sieve, as previously seen in marine bryozoans. The particle capture mechanism suggested is based on the assumed ability of the sensory stiff laterofrontal cilia to be triggered by the deflection caused by the drag force of the through‐flowing water on a captured food particle. Thus, when a particle is stopped by the laterofrontal cilia, the otherwise stiff cilia are presumably triggered to make an inward flick which brings the restrained particle back into the downward directed main current, possibly to be captured again further down in the lophophore before being carried to the mouth via the food groove. No tentacle flicks and no transport of captured particles on the frontal side of the tentacles were observed. The velocity of the metachronal wave of the water‐pumping lateral cilia was measured to be ~0.2 mm s‐1, the wavelength was ~7 μm, and hence the ciliary beat frequency estimated to be ~30 Hz (~20 °C). The filter feeding process in P. repens reported here resembles the ciliary sieving process described for marine bryozoans in recent years, although no tentacle flicks were observed in P. repens. The phylogenetic position of the phylactolaemates is discussed in the light of these findings.  相似文献   

8.
Abstract. Ciliary filter-feeding structures of gymnolaemate bryozoans—adults of Flustrellidra hispida and Alcyonidium gelatinosum , larvae of Membranipora sp.—were studied with SEM. In F. hispida and A. gelatinosum , the distal part of each tentacle has a straight row of stiff laterofrontal cilia which carry out "ciliary sieving" to capture suspended food particles that are subsequently transported downward towards the mouth by tentacle flicking; both structure and function resemble those of stenolaemate tentacles. The proximal part of the tentacle and of the ciliary ridge of a cyphonautes larva have strikingly similar structures, except that the laterofrontal cells are monociliate in the adults and biciliate in the larvae. The laterofrontal cells of the tentacles are arranged in a zigzag row and their cilia form two parallel rows, a frontal and a lateral row. The latter probably forms the sieve of stiff filter cilia in front of the water-pumping lateral cilia, whereas the frontal row appears to be held close to the frontal ciliary band of the tentacle. The biciliate laterofrontal cells of the cyphonautes larva have the cilia arranged in similar rows. The detailed morphological similarities between the ciliary bands of adult and larval filtering structures suggest that the feeding mechanisms are similar, contrary to what has been previously thought.  相似文献   

9.
The cyclostome bryozoans constitute an old and divergent group of bryozoans, whose muscle and nervous systems are poorly known. The entire neuromuscular system of the cyclostome Crisia eburnea is here mapped with phalloidin, DAPI and antibodies directed against acetylated α-tubulin and serotonin. Innervation of most muscles as well as the ganglion of C. eburnea is described, and several new details are reported, for example, on the additional and branched ectodermal muscles of the cystid, the presence of subtentacular muscles, the retractor muscles being distinctly striated and the presence of an additional pair of lateroabfrontal nerves in the proximal part of the tentacles. The serotonin-like immunoreactivity in the nervous system of C. eburnea shares many features with those of the other bryozoans studied so far, which probably reflects a common ancestry of the neural architecture. However, the nervous system shows somewhat less complexity compared to that of the sister clade, Eurystomata, and contains fewer cells and nerves compared to the cyclostome Cinctipora which has much larger zooids and more than eight tentacles. No interzooidal neural connections were found in C. eburnea, which is in agreement with the individual response of the zooids.  相似文献   

10.
Avicularia are polymorphic zooids characteristic of cheilostome bryozoans. Avicularia are assumed to have a defensive role yet ascertaining the presence of sensory structures to support this theory has been overlooked. We examine palatal morphology of the avicularia from five species of cheilostome bryozoans and compare the ultrastructural anatomy of the avicularia from two bugulid species from different habitats. SEM analysis revealed an array of palatal morphologies. Small tufts of cilia emerge from the orifice in the palate of the avicularia of Tricellaria catalinensis, Arachnopusia unicornis and Catenicella pseudoelegans. A ciliated vestigial polypide emerges from the orifice in the palate of Rhynchozoon zealandicum and comprises eleven papillae, or vestigial tentacles, seven of which are covered in microvilli. The vestigial polypide of the bird’s head avicularium of the cosmopolitan Bugula flabellata consists of a mass of ciliated and unciliated cells containing numerous granular vesicles. The avicularium of B. flabellata is capable of detecting tactile stimulation by virtue of the tuft of sensory cilia and is proactive in the capture of invertebrate epibionts. In contrast, in the deep-sea Nordgaardia cornucopioides, the vestigial polypide consists of a ciliated vestigial tentacle encased by glandular secretory cells. Avicularia possess structures derived from a feeding autozooid, and we show how the homologous structures have evolved and suggest that avicularia have been modified to carry out a variety of specific functions.  相似文献   

11.
12.
Molecular techniques are currently the leading tools for reconstructing phylogenetic relationships, but our understanding of ancestral, plesiomorphic and apomorphic characters requires the study of the morphology of extant forms for testing these phylogenies and for reconstructing character evolution. This review highlights the potential of soft body morphology for inferring the evolution and phylogeny of the lophotrochozoan phylum Bryozoa. This colonial taxon comprises aquatic coelomate filter‐feeders that dominate many benthic communities, both marine and freshwater. Despite having a similar bauplan, bryozoans are morphologically highly diverse and are represented by three major taxa: Phylactolaemata, Stenolaemata and Gymnolaemata. Recent molecular studies resulted in a comprehensive phylogenetic tree with the Phylactolaemata sister to the remaining two taxa, and Stenolaemata (Cyclostomata) sister to Gymnolaemata. We plotted data of soft tissue morphology onto this phylogeny in order to gain further insights into the origin of morphological novelties and character evolution in the phylum. All three larger clades have morphological apomorphies assignable to the latest molecular phylogeny. Stenolaemata (Cyclostomata) and Gymnolaemata were united as monophyletic Myolaemata because of the apomorphic myoepithelial and triradiate pharynx. One of the main evolutionary changes in bryozoans is a change from a body wall with two well‐developed muscular layers and numerous retractor muscles in Phylactolaemata to a body wall with few specialized muscles and few retractors in the remaining bryozoans. Such a shift probably pre‐dated a body wall calcification that evolved independently at least twice in Bryozoa and resulted in the evolution of various hydrostatic mechanisms for polypide protrusion. In Cyclostomata, body wall calcification was accompanied by a unique detachment of the peritoneum from the epidermis to form the hydrostatic membraneous sac. The digestive tract of the Myolaemata differs from the phylactolaemate condition by a distinct ciliated pylorus not present in phylactolaemates. All bryozoans have a mesodermal funiculus, which is duplicated in Gymnolaemata. A colonial system of integration (CSI) of additional, sometimes branching, funicular cords connecting neighbouring zooids via pores with pore‐cell complexes evolved at least twice in Gymnolaemata. The nervous system in all bryozoans is subepithelial and concentrated at the lophophoral base and the tentacles. Tentacular nerves emerge intertentacularly in Phylactolaemata whereas they partially emanate directly from the cerebral ganglion or the circum‐oral nerve ring in myolaemates. Overall, morphological evidence shows that ancestral forms were small, colonial coelomates with a muscular body wall and a U‐shaped gut with ciliary tentacle crown, and were capable of asexual budding. Coloniality resulted in many novelties including the origin of zooidal polymorphism, an apomorphic landmark trait of the Myolaemata.  相似文献   

13.
Regardless of the morphological divergence among larval forms of marine bryozoans, the larval nervous system and its major effector organs (musculature and ciliary fields) are largely molded on the basis of functional demands of feeding, ciliary propulsion, phototactic behaviors, and substrate exploration. Previously published ultrastructural information and immunohistochemical reconstructions presented here indicate that neuronal pathways are largely ipsilateral, with more complex synaptic connections localized within the nerve nodule. Multiciliated sensory-motor neurons diversify structurally and functionally on the basis of their position along the axis of swimming largely due to the functional demands of photoklinotaxis and substrate exploration. Vesiculariform, buguliform, and ascophoran coronate larvae all have patches of sensory neurons bordering the pyriform organ's ciliated groove (juxtapapillary cells and border cells) that are active during substrate selection. Despite their simplified form, cyclostome larvae maintain swimming and probing behaviors with sensory-motor systems functionally similar to those of some parenchymella and planula larval types. Considering the evolutionary relationships among the morphological grades of marine bryozoans, particular lineages within the gymnolaemates have independently evolved larval traits that convey a greater range of sensory abilities and increased propulsive capacity. The larval nervous system of bryozoans may be evolutionarily derived from the pretrochal region of a trochophore-like larval form.  相似文献   

14.
Laboratory experiments documenting the decomposition pattern of extant organisms are used to reconstruct the anatomy and taphonomy of fossil taxa. The subclass Graptolithina (Hemichordata: Pterobranchia) is a significant fossil taxon of the Palaeozoic era, represented by just one modern genus, Rhabdopleura. The rich graptolite fossil record is characterized by an almost total absence of fossil zooids. Here we investigated the temporal decay pattern of Rhabdopleura sp. tubes, stolons and single zooids removed from the tubarium. Tubes showed decay after four days, when fuselli began to separate from the tube walls. This rapid loss may explain the absence of fuselli from some graptolite fossils. The black stolon did not show decay until day 155. One day after their removal, zooids quickly decomposed in the following temporal sequence: (1) tentacles; (2) ectoderm; (3) arms; (4) gut; (5) cephalic shield, leading to complete disappearance of recognizable body parts in the majority of experimental zooids within 64–104 h. The most resistant zooid features to decay (61 days) were black‐pigmented granules. These results indicate that tubes and the black stolon would persist for weeks across death, transport and burial, whereas a complete decay of zooid features occurs in few days, providing an explanation for the overall poor record of fossil graptolite zooids and suggesting that recorded silhouettes of fossil zooids may be attributed to fossil decay‐resistant pigments.  相似文献   

15.
Most Recent bryozoan species are encrusting sheets, and many of these colonies have densely packed feeding zooids. In this study, I tested whether tight packing of feeding zooids affects food capture. Colonies of a bryozoan with an encrusting sheet form (Membranipora membranacea) were dissected to produce individuals whose feeding zooids were (1) closely packed, (2) more widely spaced, or (3) isolated. For each type, rates of particle ingestion were measured in still water and in a freestream velocity of 2.7 cm s(-1). Ingestion rate increased when zooids were closest together, probably because of reduced refiltration and increased feeding current strength farther from the lophophores. The mean incurrent velocity within 0.02 cm above the center of the lophophore was 0.28 cm s(-1) regardless of zooid spacing; however, when the incurrent velocity was measured more than 0.1 cm from the lophophores, zooids that were close together or spaced one zooid's width apart had significantly faster incurrent velocities than single zooids. Flow visualization suggests that isolated zooids and those spaced far apart refilter more water than zooids that are close together. These results along with the observed trend of increased zooid integration over evolutionary time suggest that the benefits of increasing coordination outweigh the consequences of intrazooid competition.  相似文献   

16.
Most species of freshwater bryozoans (Ectoprocta: Phylactolaemata) have few morphological distinctions, and within phylactolaemates, the morphology of the statoblast has been used to determine evolutionary relationships. Here, two controversial phylogenies have been proposed for phylactolaemates with regard to the relationship of Lophopodidae to other families. Two plumatellid genera, Gelatinella and Hyalinella , are candidates for the ancestral type of lophopodids. In addition, the coexistence of spines on the surfaces of the statoblast has led to the suggestion that lophopodids are closely related to the family Cristatellidae. In this study, we analysed mitochondrial DNA sequences of the 12S and 16S rDNA genes of 10 phylactolaemate species. Our results suggest that plumatellids may not be a direct ancestral group of lophopodids and that cristatellids are not a sister group of lophopodids. Fredericella , which was previously thought to be an ancestral group, was revealed to be derived. In addition, our results suggest that Stephanella is the most basal phylactolaemate. Mapping morphological characteristics onto the sequence-based phylogenetic tree revealed convergent evolution of statoblast characters.  相似文献   

17.
Cope's Rule describes increasing body size in evolutionary lineages through geological time. This pattern has been documented in unitary organisms but does it also apply to module size in colonial organisms? We address this question using 1169 cheilostome bryozoans ranging through the entire 150 million years of their evolutionary history. The temporal pattern evident in cheilostomes as a whole shows no overall change in zooid (module) size. However, individual subclades show size increases: within a genus, younger species often have larger zooids than older species. Analyses of (paleo)latitudinal shifts show that this pattern cannot be explained by latitudinal effects (Bergmann's Rule) coupled with younger species occupying higher latitudes than older species (an “out of the tropics” hypothesis). While it is plausible that size increase was linked to the advantages of large zooids in feeding, competition for trophic resources and living space, other proposed mechanisms for Cope's Rule in unitary organisms are either inapplicable to cheilostome zooid size or cannot be evaluated. Patterns and mechanisms in colonial organisms cannot and should not be extrapolated from the better‐studied unitary organisms. And even if macroevolution simply comprises repeated rounds of microevolution, evolutionary processes occurring within lineages are not always detectable from macroevolutionary patterns.  相似文献   

18.
Post-Cretaceous examples of Electridae, a primitive family of cheilostome bryozoans, are poorly represented in the fossil record, probably because of their thinly calcified zooids and preference for nearshore environments. Two new electrid species are here described from the Lower Miocene (Burdigalian) of Pontpourquey, Aquitaine, France: Electra triaurata nov. sp. and Electra aquitanica nov. sp. Both species belong to extant species groups, the E. indica and E. biscuta groups, respectively, that presently occur in the Indo-Pacific; both are the only fossil examples of these species groups. Whereas E. triaurata nov. sp. has uniserial colonies, zooids with porous gymnocysts, three flattened spines and basal windows allowing etching of the substrate to produce the trace fossil Leptichnus, E. aquitanica nov. sp. has multiserial colonies and zooids with a proximal gymnocyst bearing 2 to 5 spines.  相似文献   

19.
寒武纪没有化石苔藓动物的任何记录.最老的、毫无疑问的、真正的苔藓动物,发现于我国峡东地区的下奥陶统特马豆克阶地层中.这类苔藓动物以丰富但多样性低的变口目和少量的隐口目为代表.弗洛期的一些苔藓动物,在北美,英国和波罗的海地区(俄罗斯西北部)已相继发现,这时以Ceramopora?unapensis为代表的泡孔目苔藓动物开始出现,有一定的多样性.中奥陶世初期,苔藓动物迅速崛起,古生代狭唇纲的四个目--变口目、隐口目、泡孔目和管孔目(=环口目)苔藓动物都已经有了代表.由于奥陶纪是苔藓动物发生、演化发展和辐射的重要时期,因此,奥陶纪,特别是早奥陶世苔藓动物的任何新的发现,都有重要的意义.本文描述和解释的一个新的苔藓动物群,发现于安徽滁州琅琊山弗洛阶的红花园组上部.这个苔藓动物群由变口目爱沙尼亚苔虫亚目的两个种:Dianulites hexaporites(Pander),Orbiramus grandis sp.nov.和隐口目翼网苔虫亚目的一个种:Prophyllodi-ctya putilovensis Lavrentjeva组成.尽管这个苔藓动物群在局部地区可能还是低多样性的,但就整个世界范围而言,有一定的多样性,类似于同样以变口目苔藓动物占优势的比林根苔藓动物群,后一苔藓动物群产于波罗的海以东地区(俄罗斯西北部)同时代的地层中.  相似文献   

20.
Rorqual whales (Family: Balaenopteridae) are the world's largest predators and sometimes feed near or at the sea surface on small schooling prey. Most rorquals capture prey using a behavioral process known as lunge‐feeding that, when occurring at the surface, often exposes the mouth and head above the water. New technology has recently improved historical misconceptions about the natural variation in rorqual lunge‐feeding behavior yet missing from the literature is a dedicated study of the identification, use, and evolution of these behaviors when used to capture prey at the surface. Here we present results from a long‐term investigation of three rorqual whale species (minke whale, Balaenoptera acutorostrata; fin whale, B. physalus; and blue whale, B. musculus) that helped us develop a standardized classification system of surface lunge‐feeding (SLF) behaviors. We then tested for differences in frequency of these behaviors among the three species and across all rorqual species. Our results: (1) propose a unified classification system of six homologous SLF behaviors used by all living rorqual whale species; (2) demonstrate statistically significant differences in the frequency of each behavior by minke, fin, and blue whales; and (3) provide new information regarding the evolution of lunge‐feeding behaviors among rorqual whales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号