首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under starvation conditions, a swarm of Myxococcus xanthus cells will undergo development, a multicellular process culminating in the formation of many aggregates called fruiting bodies, each of which contains up to 100,000 spores. The mechanics of symmetry breaking and the self-organization of cells into fruiting bodies is an active area of research. Here we use microcinematography and automated image processing to quantify several transient features of developmental dynamics. An analysis of experimental data indicates that aggregation reaches its steady state in a highly nonmonotonic fashion. The number of aggregates rapidly peaks at a value 2- to 3-fold higher than the final value and then decreases before reaching a steady state. The time dependence of aggregate size is also nonmonotonic, but to a lesser extent: average aggregate size increases from the onset of aggregation to between 10 and 15 h and then gradually decreases thereafter. During this process, the distribution of aggregates transitions from a nearly random state early in development to a more ordered state later in development. A comparison of experimental results to a mathematical model based on the traffic jam hypothesis indicates that the model fails to reproduce these dynamic features of aggregation, even though it accurately describes its final outcome. The dynamic features of M. xanthus aggregation uncovered in this study impose severe constraints on its underlying mechanisms.  相似文献   

2.
Previous studies have demonstrated that fruiting body-derived Myxococcus xanthus myxospores contain two fully replicated copies of its genome, implying developmental control of chromosome replication and septation. In this study, we employ DNA replication inhibitors to determine if chromosome replication is essential to development and the exact time frame in which chromosome replication occurs within the developmental cycle. Our results show that DNA replication during the aggregation phase is essential for developmental progression, implying the existence of a checkpoint that monitors chromosome integrity at the end of the aggregation phase.  相似文献   

3.
During development, Myxococcus xanthus cells glide toward foci of aggregation and produce compact multicellular mounds. We studied development in strains with defects in contact-stimulated gliding. Contact stimulation involves a mechanism influenced by contacts between neighboring cells which stimulates the gliding motility of single cells (Hodgkin and Kaiser, Proc. Natl. Acad. Sci. USA 74:2938-2942, 1977; Hodgkin and Kaiser, Mol. Gen. Genet. 171:167-176, 1979). Most mutants containing a mutation in a single gene affecting contact stimulation (cgl gene) were able to form foci of aggregation during development. However, the aggregates were diffuse, suggesting that contact stimulation is important for morphogenetic movements during aggregation. A mutant containing a mutation in the cglF3 gene showed a striking delay in aggregation, suggesting that the cglF3 gene affects a mechanism stimulating cells moving to foci or affects a mechanism for coordinating early cell behavior. Mutants containing the cglF3 mutation in combination with a cglB, cglC, cglE, or cglF1 mutation had severe defects in aggregation and failed to recover from the early delay. The severity of the defects in mutants containing two cgl mutations suggests that cgl genes are critical for development. We propose that cgl genes stimulate cell movement or control specific contacts between cells during aggregation.  相似文献   

4.
Heart valve malformations are one of the most common types of birth defects, illustrating the complex nature of valve development. Vascular endothelial growth factor (VEGF) signaling is one pathway implicated in valve formation, however its specific spatial and temporal roles remain poorly defined. To decipher these contributions, we use two inducible dominant negative approaches in mice to disrupt VEGF signaling at different stages of embryogenesis. At an early step in valve development, VEGF signals are required for the full transformation of endocardial cells to mesenchymal cells (EMT) at the outflow tract (OFT) but not atrioventricular canal (AVC) endocardial cushions. This role likely involves signaling mediated by VEGF receptor 1 (VEGFR1), which is highly expressed in early cushion endocardium before becoming downregulated after EMT. In contrast, VEGFR2 does not exhibit robust cushion endocardium expression until after EMT is complete. At this point, VEGF signaling acts through VEGFR2 to direct the morphogenesis of the AVC cushions into mature, elongated valve leaflets. This latter role of VEGF requires the VEGF-modulating microRNA, miR-126. Thus, VEGF roles in the developing valves are dynamic, transitioning from a differentiation role directed by VEGFR1 in the OFT to a morphogenetic role through VEGFR2 primarily in the AVC-derived valves.  相似文献   

5.
6.
7.
Vegetative cells of Myxococcus xanthus were immobilized in 25-microns-diameter agarose microbeads and incubated in either growth medium or sporulation buffer. In growth medium, the cells multiplied, glided to the periphery, and then filled the beads. In sporulation buffer, up to 90% of the cells lysed and ca. 50% of the surviving cells formed resistant spores. A strong correlation between sporulation and cell lysis was observed; both phenomena were cell density dependent. Sporulation proficiency was a function of the average number of cells within the bead at the time that sporulation conditions were imposed. A minimum of ca. 4 cells per microbead was necessary for efficient lysis and sporulation to proceed. Increasing this number accelerated the lysis and sporulation process. No lysis occurred when an average of 0.4 cell was entrapped per bead. Entrapping an average of 1.7 cells per bead resulted in 46% lysis and 3% sporulation of survivors, whereas entrapping an average of 4.2 cells per bead yielded 82% lysis and 44% sporulation of the surviving cells. Sporulation and lysis also depended upon the cell density in the culture as a whole. The existence of these two independent cell density parameters (cells per bead and cells per milliliter) suggests that at least two separate cell density signals play a role in controlling sporulation in M. xanthus.  相似文献   

8.
Covalent modification of macromolecules can serve to alter their biological activities and is therefore frequently involved in regulation. I examined methylation of proteins and carbohydrates during development and vegetative growth in the procaryote Myxococcus xanthus. Striking differences in the patterns of protein methylation occurred when cell development was induced by nutrient deprivation on solid media and when cells were starved in liquid. In addition, a methylated, protease-resistant macromolecule which contained carbohydrate and which may have been an unusual type of lipopolysaccharide was observed on sodium dodecyl sulfate-polyacrylamide gels. A comparison of methylation patterns in various media and an analysis of the time course of methylation indicated that changes in methylation were part of the developmental pathway which includes aggregation. Induction of development in liquid by glycerol produced no changes in methylation.  相似文献   

9.
Iodination of Myxococcus xanthus during development   总被引:5,自引:4,他引:1       下载免费PDF全文
Intact cells of Myxococcus xanthus were iodinated with [125I]lactoperoxidase to permit examination of the surface components accessible to labeling during cell development. Vegetative cells, starved on a defined solid medium, aggregated, formed fruiting bodies, and produced myxospores. Cells collected at different stages were iodinated, and their proteins were analyzed by one- and two-dimensional electrophoresis and autoradiography. One-dimensional electrophoresis revealed six iodinated bands in vegetative cell extracts. During development, 10 radioactive bands were detected, 4 of which migrated to the same positions as those of vegetative cells. Only six bands were detected in purified, labeled myxospores. Of these, one band possessed mobility similar to that of labeled vegetative cell proteins, whereas the other bands possessed mobility similar to that detected in developing cells. Analysis of two-dimensional gels indicated that at least 14 proteins were iodinated in vegetative cells, one of which was intensely labeled (protein b). Another of the proteins (protein a) was labeled throughout development. During development, about 30 proteins were iodinated and the prominently labeled ones were designated c, d, e, f, and g. The latter two (proteins f and g) were not detected in purified, iodinated myxospores. The data indicated a pronounced change in surface structure during development; some of the change may be involved in cellular interaction during aggregation.  相似文献   

10.
Upon nutrient limitation cells of the swarming soil bacterium Myxococcus xanthus form a multicellular fruiting body in which a fraction of the cells develop into myxospores. Spore development includes the transition from a rod-shaped vegetative cell to a spherical myxospore and so is expected to be accompanied by changes in the bacterial cell envelope. Peptidoglycan is the shape-determining structure in the cell envelope of most bacteria, including myxobacteria. We analyzed the composition of peptidoglycan isolated from M. xanthus. While the basic structural elements of peptidoglycan in myxobacteria were identical to those in other gram-negative bacteria, the peptidoglycan of M. xanthus had unique structural features. meso- or LL-diaminopimelic acid was present in the stem peptides, and a new modification of N-acetylmuramic acid was detected in a fraction of the muropeptides. Peptidoglycan formed a continuous, bag-shaped sacculus in vegetative cells. The sacculus was degraded during the transition from vegetative cells to glycerol-induced myxospores. The spherical, bag-shaped coats isolated from glycerol-induced spores contained no detectable muropeptides, but they contained small amounts of N-acetylmuramic acid and meso-diaminopimelic acid.  相似文献   

11.
12.
We have examined the pattern of synthesis of several membrane proteins during the aggregation phase of development in Myxococcus xanthus. Development was initiated by plating vegetative cells on polycarbonate filters placed on top of an agar medium that supported fruiting body formation. At various times during aggregation a filter was removed, the cells were pulse-labeled with [35S]methionine, and the membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The rate of synthesis of numerous individual proteins changed during aggregation; we concentrated on six whose pattern of synthesis was greatly altered during aggregation. The rate of synthesis of five of the six proteins increased considerably during aggregation; that of the remaining protein was curtailed and appeared to be regulated by nutrient conditions. Three of the five major membrane proteins that increased during aggregation had a unique pattern of synthesis that was displayed only under conditions that are are required for development - high cell density, nutrient depletion, and a solid (agar) surface. The remaining two proteins were not unique to development; the appearance of one protein could be induced under conditions of high cell density, whereas the other could be induced by placing the cells on a solid agar surface. All of the five major proteins that appeared during development did so during the preaggregation stage, and the synthesis of four of the five proteins appeared to be curtailed late in aggregation. The synthesis of the remaining protein continued throughout aggregation.  相似文献   

13.
Cyclic AMP levels doubled in Myxococcus xanthus under conditions in which cells aggregate and form fruiting bodies. In liquid medium, glycerol- or dimethyl sulfoxide-induced sporulating cultures exhibited a sharp but transient rise in cyclic AMP concentration after 45 min.  相似文献   

14.
Myxococcus xanthus, a gram-negative soil bacterium, responds to amino acid starvation by entering a process of multicellular development which culminates in the assembly of spore-filled fruiting bodies. Previous studies utilizing developmental inhibitors (such as methionine, lysine, or threonine) have revealed important clues about the mechanisms involved in fruiting body formation. We used Biolog phenotype microarrays to screen 384 chemicals for complete inhibition of fruiting body development in M. xanthus. Here, we report the identification of a novel inhibitor of fruiting body formation and sporulation, beta-d-allose. beta-d-Allose, a rare sugar, is a member of the aldohexose family and a C3 epimer of glucose. Our studies show that beta-d-allose does not affect cell growth, viability, agglutination, or motility. However, beta-galactosidase reporters demonstrate that genes activated between 4 and 14 h of development show significantly lower expression levels in the presence of beta-d-allose. Furthermore, inhibition of fruiting body formation occurs only when beta-d-allose is added to submerged cultures before 12 h of development. In competition studies, high concentrations of galactose and xylose antagonize the nonfruiting response to beta-d-allose, while glucose is capable of partial antagonism. Finally, a magellan-4 transposon mutagenesis screen identified glcK, a putative glucokinase gene, required for beta-d-allose-mediated inhibition of fruiting body formation. Subsequent glucokinase activity assays of the glcK mutant further supported the role of this protein in glucose phosphorylation.  相似文献   

15.
16.
17.
We describe here an extracellular proteolytic activity secreted during both growth and submerged development by Myxococcus xanthus DK1622. This activity yields the clotting of kappa-casein at pH 6 and is inhibited by specific inhibitors of aspartic proteases. Secretion of this milk-clotting proteolytic activity (of Mcp) is time regulated during the developmental cycle, with a large increase near 9 h poststarvation, but its production does not require cell-cell contact. The lack of secretion of this activity by several developmental mutants in submerged development conditions shows that Mcp production is developmentally regulated.  相似文献   

18.
VGP is a major cell-surface glycoprotein present in vegetative cells of Myxococcus xanthus. Serological assays indicated that this protein was released from cells and accumulated in the medium during development, i.e., aggregation, fruiting body formation, and myxosporulation. Cells induced to form spores in the absence of aggregation retained VGP, indicating that loss of VGP was associated with developmental aggregation rather than myxosporulation. Anti-VGP antibodies inhibited vegetative cell gliding, suggesting the protein may also be required for motility.  相似文献   

19.
Glucosamine (GlcN), which has previously been shown to rescue fruiting body formation, lysis, and sporulation in a developmental mutant (G. Janssen and M. Dworkin, Dev. Biol. 112:194-202, 1985), induced lysis in vegetative and developing wild-type cells and inhibited fruiting body formation. It also resulted in a transient, intracellular increase in the concentration of glycerol, a known sporulation inducer, and sporulation of the surviving cells. Phospholipase activity, which was shown to be normally developmentally regulated, increased 7.6-fold after treatment of vegetative cells with 50 mM GlcN. Likewise, autocidal activity, which normally increased 18 to 24 h after the initiation of development, increased 20% when vegetative or developing cells were exposed to GlcN. Two mutants resistant to GlcN-induced lysis (MD1021 and MD1022) were isolated and showed neither an increase in autocide production nor an increase in phospholipase activity in response to added GlcN. MD1021 was developmentally deficient, and GlcN rescued fruiting body formation as well as phospholipase activity and autocide production. We propose that GlcN exerts its lytic effect by regulating the activity of phospholipase enzymes that release autocides, compounds that are believed to be responsible for developmental autolysis. GlcN-induced sporulation was found to depend on several factors: the initial cell density, the amount of lysis induced by GlcN, and the presence of tan-phase variants. An initial cell density of greater than 2 x 10(5) cells per ml was required to support GlcN-induced sporulation, and sporulation did not occur unless 50 to 75% of these cells had lysed. Mutants that were resistant to GlcN-induced lysis also did not sporulate in the presence of GlcN. The effects of GlcN on developing cells depended on the concentration of GlcN added; the addition of low concentrations of GlcN resulted in enhancement of sporulation, while higher concentrations resulted in the inhibition of sporulation. The ultrastructure of GlcN-induced spores resembled that of spores induced by the exogenous addition of glycerol, in contrast to spores isolated from mature fruiting bodies. A model by which GlcN may regulate both lysis and sporulation is presented.  相似文献   

20.
S M Panasenko  B Jann    K Jann 《Journal of bacteriology》1989,171(4):1835-1840
We have examined the alterations in lipopolysaccharide during aggregation and early development in Myxococcus xanthus. The lipopolysaccharide was isolated and characterized from cells developing on agar during glycerol induction and vegetative growth. A methylated amino sugar was identified as 6-O-methylgalactosamine by gas-liquid chromatography-mass spectrometry. This novel sugar was enriched in cells developing on agar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号