首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
The photodynamically produced mutagenicity and toxicity of 8 acridine compounds were compared in Saccharomyces cerevisiae under resting and growing conditions. Without irradiation none of the acridines induced respiratory-deficient ('petite') colonies, indicative of mitochondrial DNA damage, in resting cells; and only acriflavine and proflavine induced 'petites' in growing cells. Also, without irradiation none of the acridines were significantly toxic or mutagenic for nuclear DNA under resting or growing conditions. However, with irradiation, acriflavine, proflavine, acridine yellow and rivanol became effective 'petite'-inducing mutagens and highly toxic for resting cells, while acriflavine, proflavine, and acridine orange became effective nuclear mutagens for resting cells. Acridine, quinacrine and 9-aminoacridine were not at all biologically effective with irradiation for resting cells. The results presented here indicate that singlet oxygen is generated by a photodynamic mechanism when acriflavine is irradiated, and further, that acridine, quinacrine and 9-aminoacridine are ineffective photosensitizers, because they are incapable of generating singlet oxygen with irradiation.  相似文献   

2.
The ability of proflavine (3,6-diaminoacridine) and its 2,7-dimethyl, 2,7-diethyl, 2,7-diisopropyl and 2,7-di-tert.-butyl derivatives to induce the 'petite' mutation in Saccharomyces cerevisiae has been studied in relation to the DNA-binding properties of the compounds. The nature of the binding has been investigated by nuclear magnetic resonance techniques, and the results support and clarify earlier suggestions that the first 3 members of the series intercalate into DNA while the diisopropyl and di-tert.-butyl compounds do not. Toxicity of the drugs was primarily associated with their mode of DNA binding, but lipophilicity had an important secondary effect. It seems likely that the toxic properties of the more lipophilic DNA-intercalating members of the series mask their potential for 'petite' mutagenesis.  相似文献   

3.
Two series of difunctional DNA-intercalating agents (diacridines and diquinolines) were tested for mutagenic properties in Salmonella typhimurium strain TA1537, and for 'petite' mutagenesis activity in Saccharomyces cerevisiae, and also compared in terms of their structural, lipophilic and DNA-binding properties. Diacridines with only a short chain length were monointercalators, while those with an alkyl linker chain longer than C6 were bisintercalators. Although the bisintercalators especially bound very tightly to DNA, none of these compounds was as effective a frameshift mutagen in TA1537 as the parent chromophore 9-aminoacridine. However, the two (monointercalating) diacridines of shortest chain length were still able to cause frameshifts, and this ability returned (albeit weakly) in the bisintercalators of longest chain length. Although 9-aminoacridine showed no ability for 'petite' mutagenesis, the diacridines of longer chain length were very effective in causing this mitochondrial event. In the quinoline series, both the parent chromophore (4-aminoquinoline) and all the diquinolines were weak monointercalators. None of these compounds showed any ability for frameshift mutagenesis, although some were very weak mitochondrial mutagens. It is concluded that linking two acridines produces compounds whose mutagenic properties might have been predicted from our current knowledge of the parent molecules. However, despite a similar ability to intercalate DNA, the diquinolines show no resemblance to acridines in their mutagenic properties.  相似文献   

4.
The inhibition of ribonucleic acid polymerase by acridines   总被引:8,自引:6,他引:2       下载免费PDF全文
1. The aminoacridines, proflavine (3,6-diaminoacridine) and 9-aminoacridine, and a hydrogenated derivative, 9-amino-1,2,3,4-tetrahydroacridine, were shown to inhibit in vitro the DNA-primed RNA polymerase of Escherichia coli. The inhibition is strong with both proflavine and 9-aminoacridine, but weak with 9-amino-1,2,3,4-tetrahydroacridine. 2. The extent to which the three acridines bind to calf-thymus DNA in the enzyme medium was studied spectrophotometrically. The extent of binding decreases in the order: proflavine, 9-aminoacridine, 9-amino-1,2,3,4-tetrahydroacridine. Some evidence was also obtained for interaction between the nucleoside triphosphate substrates and proflavine or 9-aminoacridine; no such interaction was detectable with 9-amino-1,2,3,4-tetrahydroacridine. 3. Although the amount of acridine bound to DNA increases with increasing inhibition, a stage is reached where an increase in acridine concentration still causes an increase in inhibition, with practically no increase in the amount bound to DNA. 4. Plots of reciprocal rates against the reciprocal of DNA concentration were linear and had a common intercept when proflavine or 9-aminoacridine was present. Similar relations were obtained when the reciprocal concentration of nucleoside triphosphates was plotted. The observations are interpreted kinetically in terms of a competitive inhibition of the enzyme by proflavine or 9-aminoacridine and of a kinetic role for the DNA analogous to ;activation'. 5. This suggests that inhibitory acridine molecules can occupy the sites on the RNA polymerase that are specific for binding the nucleoside triphosphate substrate or the bases of the DNA, when these become accessible during the copying process.  相似文献   

5.
A delay (~10 min) in the appearance of intracellular phage is caused by preincubating the infecting phage T4o1 in proflavine, acridine orange, or ethidium, but not polyamines. No significant delay in attachment is observed. Apparently the presence of the dye is required inside the permeability barrier of the phage at the time of infection. The effect of proflavine is reduced in the presence of polyamines, suggesting that the active site is on DNA. The phage-host complex is sensitive to shear if the infecting phage have been incubated in proflavine or ethidium, indicating that the completion of DNA injection is delayed. Finally no partially injected complexes could be detected after shearing, which suggests that most of the delay occurs near the beginning of the injection process.  相似文献   

6.
A. Blake  A. R. Peacocke 《Biopolymers》1966,4(10):1091-1104
The optical rotatory dispersion curves of the proflavine cation were measured in the spectral range 400–500 mμ. No optical activity was observed for the free cation but a large positive Cotton effect appeared in the presence of DNA. The effect of ionic strength, denaturation of the DNA, and the DNA/proflavine ratio were studied. The dependence of the magnitude of the Cotton effect on the DNA/proflavine ratio suggests that a nearest-neighbor interaction between bound proflavine molecules is necessary for optical activity. A simple statistical treatment was made which indicated that only a small number of proflavine molecules are required in close proximity for optical activity to occur. Denaturation of the DNA did not destroy the optical activity, which shows that long runs of DNA double helix are not necessary for optical activity of the ligand molecules. The optical rotatory dispersion curves of acridine orange which was bound to DNA were also measured. Two Cotton effects of opposite sense could be distinguished, the relative magnitudes of which depended on the DNA/acridine orange ratio and the state of denaturation of the DNA. The apparent differences from the proflavine-DNA system can to a large extent be explained in terms of the tendency of acridine orange to form aggregates.  相似文献   

7.
Summary The effects of the acridines euflavine and proflavine on mitochondrial DNA (mtDNA) replication and mutation inSaccharomyces cerevisiae have been compared. In contrast to previous results we found that under our conditions proflavine can indeed induce high levels (>80%) of petite mutants, although six times less efficiently than euflavine. The parameters measured for mutagenesis of the mitochondrial genome and inhibition of mtDNA replication in whole cells suggest that the modes of action of euflavine and proflavine are very similar. After extended (18h) treatment of growing cells with each drug the percentage loss of mtDNA or genetic loci was almost coincidental with the extent of petite induction.It was found that proflavine is equally as effective as euflavine in inhibiting mtDNA replication in isolated mitochondria in contrast to the differential between the drugs observed in vivo. However, proflavine and euflavine inhibit cellular growth at almost the same concentrations. It is therefore proposed that there is some intracellular permeability barrier which impedes proflavine access to the mitochondrial DNA replicating system.The petites induced by euflavine (and proflavine) are characterized by there being a preferential induction ofrho 0 petites lacking mtDNA as opposed torho - petites retaining mtDNA. This is in contrast to the relative proportions of such petites induced by ethidium bromide or berenil. A scheme for the production of petites by euflavine is presented, in which euflavine inhibits the replication of mtDNA, but does not cause direct fragmentation of mtDNA (unlike ethidium bromide and berenil). The proposed scheme explains the production of the high frequency ofrho o cells, as well as therho - cells induced by euflavine. The scheme also accounts for previous observations that euflavine only mutants growing cultures, and that the buds, but not mother cells, become petite.  相似文献   

8.
The SOS-function-inducing activity of chemical mutagens in Escherichia coli   总被引:4,自引:0,他引:4  
The SOS-function-inducing activities of 42 chemical mutagens were investigated in Escherichia coli K12. The induction of the SOS function was assayed by monitoring the beta-galactosidase activity in the sulA::lacZ fusion strain PQ37 . To correct for the inhibitory effects of test chemicals on mRNA or protein synthesis, the level of the constitutive alkaline phosphatase was assayed in parallel. Most of the mutagens reported to be mutagenic to the Ames' Salmonella tester strains showed the SOS-function-inducing activity. The inducible SOS repair may be responsible for not only base-change mutations but also frameshift mutations. However, 9-aminoacridine, ethidium bromide and 4-nitro-o-phenylenediamine did not induce the SOS function, suggesting that the mutagenesis induced by these mutagens may occur independently of SOS repair. Present results support the SOS mutagenesis model that error-prone SOS repair plays an important role in mutagenesis induced by most chemical mutagens.  相似文献   

9.
The photosensitizing efficiency of six dyes--proflavine, 9-aminoacridine, ethidium bromide, thiopyronine, pyronine and acridine red--have been compared on the basis of the inactivation of sensitized T4 phage caused by light irradiation. This reaction was only measurable after diffusion of the dye through the phage capsid and was not observed in the presence of either chloroquine or quinacrine; it followed a single-hit kinetics as a function of the irradiation time. With each dye, a double reciprocal plot of the inactivation constant versus the dye concentration present gave rise to a linear relationship. From this relation, parameters were deduced which expressed the relative photosensitizing efficiencies. Dye-binding to the phages was measured and the proflavine-mediated inactivation appeared to be related to the amount of strongly bound molecules. Such a conclusion could not be reached in the case of 9-aminoacridine and ethidium bromide, which were much less efficient photosensitizers than proflavine, but which were also strongly bound to the phages. Thiopyronine was weakly bound to the phages; it had, however, the highest photosensitizing activity observed. These results indicate that various mechanisms are involved when the phage photosensitization is due to one dye or another.  相似文献   

10.
A range of physical and chemical agents induce the mitochondrial 'petite' mutation in the yeast Saccharomyces cerevisiae. DNA intercalating agents as well as chemicals which can interfere with DNA synthesis induce this mutation, but only in growing cells. Many chemical or physical agents that produce a DNA lesion which is not simply reversed can induce various levels of the petite mutation, and may be more effective in non-growing cells. A limited number of chemicals act like ethidium bromide, inducing a high frequency of petites which is partially reversible with increasing concentration or time. The ability of a specific compound to be transported into mitochondria or its affinity for AT base pairs in DNA may determine whether it acts primarily as a nuclear or mitochondrial mutagen. In mammalian cells, some neoplastic changes occur at the mitochondrial level. Analogies between yeast and mammalian mitochondria suggest that agents which increase petite mutagenesis in yeast may have some carcinogenic potential. Although some types of petite inducer may have potential as antitumour drugs, those which are very effective antimitochondrial agents appear to be too toxic for therapeutic use. A process comparable to early stages in petite mutagensis occurs in human degenerative diseases and it seems possible that a consequence of exposure to petite mutagens could be an increase in the rate of degenerative diseases or of the aging process.  相似文献   

11.
The results of an investigation on the interaction of proflavine and of ethidium bromide with DNA (calf thymus) in dilute aqueous solution are reported. The binding of the two dyes by DNA has been studied by means of microcalorimetric and of equilibrium dialysis measurements. Data on the thermodynamics of dimerization of both proflavine and ethidium bromide in aqueous solution obtained on the basis of spectroscopic and/or calorimetric experiments are also reported.The enthalpy data show that dye-dimerization and dye “strong” interaction with DNA are energetically favourable and quite similar while only in the latter case the phenomenon is also entropy driven. This is taken as further evidence in support of the concept that “strong” interaction-of both proflavine and ethidium bromide with DNA means dye molecules intercalation into the native, double helical structure of the biopolymer.  相似文献   

12.
The mutagenicity of a series of derivatives of 9-anilinoacridine, including the clinical antitumour agent amsacrine, has been assessed using a bacterial frameshift tester strain (Salmonella typhimurium TA1537) and a yeast petite colony assay (Saccharomyces cerevisiae 5178B). The results have been compared with microbial mammalian cell cytotoxicity, DNA binding affinity and acridine base strength (pKa). Compounds containing strong electron donor substituents on the acridine ring, and which have a high acridine pKa, show minimal frameshift mutagenicity but are strong inducers of petite yeast mutants. Conversely, some compounds which have a high DNA binding constant but a significant proportion of uncharged form at neutral pH, show high frameshift mutagenicity but minimal induction of petite mutants. It is hypothesised that this inverse relationship arises from the presence of trans-membrane drug transport mechanisms which act to exclude some compounds, particularly strongly basic compounds from the cytoplasm and to concentrate them in mitochondria.  相似文献   

13.
Abstract

Ledakrin (nitracrine), C-283, is a 1-nitro-9-aminoacridine derivative that is used in Poland as an antitumor agent. In order to investigate the basis of the activity of this compound the structure of another analog, [9-(3-dimethyl-l-methylpropylimino)-l-nitro-9, 10-dihydroacridine], C-829, that has similar activity, was determined by X-ray crystallographic techniques and was compared with that of ledakrin, already reported in the literature. In both molecules the proximity of the 1-nitro to the substituted 9-aminoacridine group causes extensive distortions. These compounds are believed to act, after metabolic “activation”, by cross-linking DNA. Such cross-linking does not occur in the absence of the 1-nitro group or if the nitro group is moved to the 2-, 3- or 4-position. Computer-assisted model-building has been used to test possible intercalative models. It has shown that functional groups on C-829 or C-283 are, when the acridine portion of the molecule is intercalated as in a proflavine dinucleoside phosphate complex, in positions suitable for DNA cross-linking by activated 1-nitro- 9-aminoacridine derivatives.  相似文献   

14.
Extrinsic Cotton effects of proflavine bound to polynucleotides   总被引:1,自引:0,他引:1  
A Blake  A R Peacocke 《Biopolymers》1967,5(4):383-397
The magnitude of the Cotton effect of proflavine which is bound to RNA or to denatured DNA depends on the ratio of bound proflavine to nucleic acid base. A statistical treatment which explains this behavior has been fitted to the experimental curves and indicates that optical activity arises through interaction between two or more bound proflavine molecules. The corresponding requirement with double helical DNA is for interaction between 3–4 proflavine molecules. Although proflavine binds to denatured DNA at pH 2.8, as shown by the shift of the proflavine spectrum, the strong binding process is absent, and to this is attributed the absence of the Cotton effect at low pH. Studies on the Cotton effects of proflavine bound to poly A and poly U at neutral pH, to poly A at acid pH and to poly (A + U) allow the generalization that a relatively rigid configuration of the binding macromolecule is required for the induction of these extrinsic Cotton effects.  相似文献   

15.
Endonuclease I, exonuclease I, and exonuclease II-deoxyribonucleic acid (DNA) polymerase I activities are not vital functions in Escherichia coli, although the latter two enzymes have been indirectly shown to be involved in DNA repair processes. Acridines such as acridine orange and proflavine interfere with repair in vivo, and we find that such compounds inhibit the in vitro activity of exonuclease I and DNA polymerase I but stimulate endonuclease I activity and hydrolysis of p-nitrophenyl thymidine-5′-phosphate by exonuclease II. Another acridine, 10-methylacridinium chloride, binds strongly to DNA but is relatively inert both in vivo and in vitro. These experiments suggest that acridines affect enzyme activity by interacting with the enzyme directly as well as with DNA. Resulting conformational changes in the DNA-dependent enzymes might explain why similar acridines which form similar DNA complexes have such a wide range of physiological effects. Differential sensitivity of exonuclease I and DNA polymerase I to acridine inhibition relative to other DNA-dependent enzymes may contribute to the acridine sensitivity of DNA repair.  相似文献   

16.
The effect of the antitumour acridine derivative amsacrine [4'-(9-acridinylamino)methanesulphon-m-anisidide] on the fluorescence lifetime of DNA-bound ethidium has been investigated using a synchronously pumped cavity dumped dye laser producing picosecond pulses for sample excitation and a time-correlated single photon counting detection system. As the proportion of DNA-bound amsacrine on the synthetic DNA polymer poly[deoxyadenylic-thymidylic acid] is increased, the fluorescence decay curve of ethidium can be accurately resolved into two exponential components. The short lifetime component, whose proportion increases with increasing proportions of DNA-bound amsacrine, has a lifetime of between 3 and 4 ns, significantly longer than that of ethidium in aqueous solution (1.63 ns). The magnitude of the long lifetime component decreases from 25.4 to 14 ns with increasing proportions of bound amsacrine. It is concluded that a new fluorescence state of ethidium (lifetime 3-4 ns) is present, probably resulting from reversible electron transfer between ethidium and amsacrine. The ability of various 9-anilinoacridine derivatives to quench the fluorescence of DNA-bound ethidium appears to be related to the electron donor properties of the substituents on the anilino ring, as well as to experimental antitumour activity. The electron donor properties of DNA-bound amsacrine may therefore be relevant to its antitumour action.  相似文献   

17.
All acridines used (acriflavine, proflavine, acridine orange and 3-azido-10-methylacridinium chloride) produced killing in yeast cells when activated with visible light. Acriflavine, proflavine and 3-azido-10-methylacridinium chloride, but not acridine orange, produced petite and sectored colonies. Both cell killing and petite induction by light activation of acriflavine resulted apparently from photodynamic action mediated by singlet oxygen (1O2) since the effect were prevented by either sodium azide or anaerobiosis. The biological effects of 3-azido-10-methylacridinium chloride, which was developed as a potential photoaffinity probe for studying the binding and biological effects of acridines, appeared to be due to a photodynamic action analogous to that of acriflavine. Sodium azide or anaerobiosis prevented the light-activated effects of 3-azido-10-methylacridinium chloride despite the fact that the initial chemical breakdown of the azido derivative induced by light was not affected. Cells suspended in D2O demonstrated an enhanced response to 3-azido-10-methylacridinium chloride with irradiation. These results indicate that singlet oxygen mediates the light-activated biological effects of both acriflavine and 3-azido-10-methylacridinium chloride.  相似文献   

18.
Growth of guinea-pig keratocytes (GPK) proceeded normally in standard medium in which glutamine (mitochondrial substrate) replaced glucose as the carbon and energy source. Cells in the glucose-free glutamine cultures were much more sensitive to the toxic and growth-inhibiting effects of the antimitochondrial drugs ethidium bromide, chloramphenicol and oligomycin than cells in glucose-containing cultures. In the latter, cells continued to proliferate in the presence of these drugs after 2-3 days incubation, but in the non-fermenting cells growth was arrested within 24 h and there was more than 95% cell death after 2 days. Cycloheximide, a general inhibitor of protein synthesis in eukaryotic cells, showed no selective inhibition of growth and glutamine and glucose cultures were equally affected. The system appears to be useful for the detection of primary antimitochondrial activity of drugs in general.  相似文献   

19.
L Noronha-Blob  J Pitha 《Biochemistry》1979,18(15):3206-3209
The binding of polyuridylate to cells is substantially increased by proflavine. This enhanced binding is saturable with respect to time and to the concentration of both proflavine and polyuridylate. Enhancement is observed only when cells are exposed to both proflavine and polyuridylate together and depends cooperatively on the proflavine concentration. The resulting complex formed between the cell, proflavine, and polyuridylate can be dissociated with salt but not with sucrose solutions. An increase in the binding of polyuridylate to cells similar to that observed with proflavine was also obtained with cationic dyes such as acridine orange, 9-aminoacridine, and Hoechst 33258, while the introduction of a bulky polysaccharide residue, dextran, into the dyes cancels these effects. Similarly, cationic aromatic compounds such as primaquine and quinacrine which carry bulky nonplanar substituents or aliphatic cationic compounds like ethylenediamine do not enhance binding. Proflavine is unable to augment the binding of a basic macromolecule, diethylaminoethylaminoethyldextran, to cells. The model proposed for the enhanced binding of polyuridylate is based on the cooperative formation of stacked complexes of cationic dye located between the cell surface and the bound polyuridylate.  相似文献   

20.
Ethidium Bromide-Resistant Mutant of Bacillus subtilis   总被引:6,自引:1,他引:5       下载免费PDF全文
An ethidium bromide-resistant mutant (EB8) derived from a Marburg strain of Bacillus subtilis was found to be conditionally resistant to 10 mug of ethidium bromide per ml. Expression of resistance is complete only during vegetative growth at incubation temperatures above 30 C in complex medium or minimal medium supplemented with Casamino Acids. Strain EB8 is cross-resistant to acriflavine and proflavine. The ethidium bromide resistance marker is co-transduced with hisA1 at a frequency of 6% and is located to the right of hisA1 on the B. subtilis chromosome as it is usually represented on the map. Incorporation of [5-(3)H] uridine by strain EB8 showed that ribonucleic acid synthesis in both whole cells and protoplasts is ethidium bromide-resistant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号