首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We have previously shown that anterior intestinal epithelium of the euryhaline mudskipper (Periophthalmus modestus) undergoes apoptosis during seawater (SW) acclimation, whereas elevated cell proliferation was observed in freshwater (FW)-acclimated fish. To understand the possible endocrine regulation of the gastrointestinal cell turnover during salinity acclimation, we examined the ratios of apoptotic and proliferating cells in the anterior intestine of one-third SW-acclimated mudskipper treated with triiodothyronine (T3), cortisol, 11-deoxycorticosterone (DOC, the putative teleostean mineralocorticoid), or prolactin (PRL). In situ nick end labeling of genomic DNA (TUNEL) and immunohistochemistry of proliferating cells nuclear antigen (PCNA) were used as indicators of apoptosis and cell proliferations, respectively. Cortisol significantly elevated apoptosis (P<0.05) in the epithelia and connective tissues and also stimulated the epithelial cell proliferation (P<0.05). PRL induced epithelial cell proliferation (P<0.05), but did not affect apoptotic status of the intestinal epithelium. Neither T3 nor DOC had any impact on cell proliferation or apoptosis. Together, our results suggest a role for cortisol and PRL in the regulation of anterior intestinal epithelial turnover during salinity acclimation in this species.  相似文献   

2.
Claudins are the major determinants of paracellular epithelial permeability in multicellular organisms. In Atlantic salmon (Salmo salar L.), we previously found that mRNA expression of the abundant gill-specific claudin 30 decreases during seawater (SW) acclimation, suggesting that this claudin is associated with remodeling of the epithelium during salinity change. This study investigated localization, protein expression, and function of claudin 30. Confocal microscopy showed that claudin 30 protein was located at cell-cell interfaces in the gill filament in SW- and fresh water (FW)-acclimated salmon, with the same distribution, overall, as the tight junction protein ZO-1. Claudin 30 was located at the apical tight junction interface and in cell membranes deeper in the epithelia. Colocalization with the α-subunit of the Na(+)-K(+)-ATPase was negligible, suggesting limited association with mitochondria-rich cells. Immunoblotting of gill samples showed lower claudin 30 protein expression in SW than FW fish. Retroviral transduction of claudin 30 into Madin-Darby canine kidney cells resulted in a decreased conductance of 19%. The decreased conductance correlated with a decreased permeability of the cell monolayer to monovalent cations, whereas permeability to chloride was unaffected. Confocal microscopy revealed that claudin 30 was expressed in the lateral membrane, as well as in tight junctions of Madin-Darby canine kidney cells, thereby paralleling the findings in the native gill. This study suggests that claudin 30 functions as a cation barrier between pavement cells in the gill and also has a general role in cell-cell adhesion in deeper layers of the epithelium.  相似文献   

3.
The teleost gill carries out NaCl uptake in freshwater (FW) and NaCl excretion in seawater (SW). This transformation with salinity requires close regulation of ion transporter capacity and epithelial permeability. This study investigates the regulation of tight-junctional claudins during salinity acclimation in fish. We identified claudin 3- and claudin 4-like immunoreactive proteins and examined their expression and that of select ion transporters by performing Western blot in tilapia (Oreochromis mossambicus) gill during FW and SW acclimation. Transfer of FW tilapia to SW increased plasma osmolality, which was corrected after 4 days, coinciding with increased gill Na+-K+-ATPase and Na+-K+-2Cl(-) cotransporter expression. Gill claudin 3- and claudin 4-like proteins were reduced with exposure to SW. Transfer to FW increased both claudin-like proteins. Immunohistochemistry shows that claudin 3-like protein was localized deep in the FW gill filament, whereas staining was found apically in SW gill. Claudin 4-like proteins are localized predominantly in the filament outer epithelial layer, and staining appears more intense in the gill of FW versus SW fish. In addition, tilapia claudin 28a and 30 genes were characterized, and mRNA expression was found to increase during FW acclimation. These studies are the first to detect putative claudin proteins in teleosts and show their localization and regulation with salinity in gill epithelium. The data indicate that claudins may be important in permeability changes associated with salinity acclimation and possibly the formation of deeper tight junctions in FW gill. This may reduce ion permeability, which is a critical facet of FW osmoregulation.  相似文献   

4.
The influence of acclimation to seawater (SW) and growth hormone (GH) administration on immune functions was examined in the rainbow trout (Oncorhynchus mykiss). After 3 days acclimation to dilute SW (12 parts per thousand, ppt), an increase in plasma lysozyme activity was observed compared to the fish kept in fresh water (FW). No change was seen in plasma immunoglobulin M (IgM) levels. When they were transferred from dilute SW to full-strength SW (29 ppt) after a single intra-peritoneal injection of ovine or salmon GH, plasma sodium levels of GH-treated fish were significantly lower than those of the control fish injected with Ringer's solution 24 h after the transfer. The plasma level of IgM was not influenced by GH injection in the fish kept in FW nor in those transferred to SW. The administration of GH increased plasma lysozyme activity in the fish in FW, but no further increase was seen after SW transfer. The production of superoxide anions in peripheral blood leucocytes was stimulated by GH in both FW and SW. These results suggest that GH is involved in the stimulation of the non-specific immune functions in SW-acclimated salmonids.  相似文献   

5.
The Mozambique tilapia (Oreochromis mossambicus) is prone to osmoregulatory disturbances when faced with fluctuating ambient temperatures. To investigate the underlying causes of this phenomenon, freshwater (FW)- and seawater (SW)-acclimated tilapia were transferred to 15, 25, or 35°C for 2 weeks, and along with typically used indicators of osmoregulatory status [plasma osmolality and branchial and intestinal specific Na+, K+-ATPase (NKA) activity], we used tissue microarrays (TMA) and laser-scanning cytometry (LSC) to characterize the effects of temperature acclimation. Tissue microarrays were stained with fluorescently labeled anti-Na+, K+-ATPase antibodies that allowed for the quantification of NKA abundance per unit area within individual branchial mitochondria-rich cells (MRCs) as well as sections of renal tissue. Mitochondria-rich cell counts and estimates of size were carried out for each treatment by the detection of DASPMI fluorescence. The combined analyses showed that SW fish have larger but fewer MRCs that contain more NKA per unit area. After a 2-week acclimation to 15°C tilapia experienced osmotic imbalances in both FW and SW that were likely due to low NKA activity. SW-acclimated fish compensated for the low activity by increasing MRC size and subsequently the concentration of NKA within MRCs. Although there were no signs of osmotic stress in FW-acclimated tilapia at 25°C, there was an increased NKA capacity that was most likely mediated by a higher MRC count. We conclude on the basis of the different responses to temperature acclimation that salinity-induced changes in the NKA concentration of MRCs alter thermal tolerance limits of tilapia.  相似文献   

6.
In fishes, variation in paracellular permeability is important for regulating salt and water balance. Paracellular permeability is maintained by TJs in vertebrate epithelia. This study examined the spatial distribution and effects of salinity on claudin-3 isoform mRNA expression and abundance along the gastrointestinal (GI) tract of the euryhaline puffer fish (Tetraodon nigroviridis) and related these to morphological heterogeneity of the TJ complex. The puffer fish GI tract was divided into three regions (anterior, middle and posterior) and four isoforms of claudin-3 (Tncldn3a, Tncldn3b, Tncldn3c and Tncldn3d) were found to be expressed in each section. The effect of freshwater (FW) or seawater (SW) acclimation on regional 1) Tncldn3 isoform mRNA abundance, 2) TJ complex morphology and 3) Na+–K+-ATPase (NKA) activity was examined. In situ hybridization indicated that all Tncldn3 isoforms localized to the mucosal epithelium in the intestine. The mRNA abundance of Tncldn3 isoforms varied spatially along the GI tract. Furthermore, region as well as isoform specific alterations in mRNA abundance could be observed along the GI tract in response to salinity change. Qualitative TEM observations suggested that the depth of TJ complexes increased from anterior to posterior along the GI tract and that TJ complexes in the GI tract of FW fish were deeper than those in SW. NKA activity increased from anterior to posterior in fish acclimated to FW, whereas activity in fish acclimated to SW was uniformly high along the length of the intestine. Taken together data; (1) suggest a progressive decrease in epithelial permeability from anterior to posterior along the longitudinal axis of the puffer fish GI tract, (2) indicate that claudin-3 protein isoforms may play a role in regulating paracellular movement of solutes across this epithelium, and (3) provide further evidence that claudin-3 proteins are involved in the homeostatic control of salt and water balance in fishes.  相似文献   

7.
Guppies Poecilia reticulata acclimated to 100% seawater (SW) had lower taurine and alanine levels in muscle than fish kept in freshwater (FW). The glycine level, in contrast, was higher in SW fish than in FW fish. Levels of other free amino acids (FAA) were comparatively low and little different between fish adapted in FW and in SW. In both FW and SW fish almost all of muscle FAA showed little difference in levels between fish kept on diets containing three different levels of trimethylamine (TMA) (0, 223, and 334 mumol TMA/kg dry weight of diet). Total FAA and nonprotein nitrogen levels in muscle were unaffected by the difference in either the diet species or the ambient salinities. Muscle trimethylamine oxide levels were higher in SW fish than in FW fish. In both salinities, muscle trimethylamine oxide levels in fish on the diets containing 223 and 334 mumol TMA/kg were slightly greater than the level in fish on the TMA-free diet.  相似文献   

8.
Summary Rates of intestinal water, sodium and chloride absorption in tilapia, adapted to fresh water (FW) and seawater (SW), were measured in vitro, using noneverted sacs made from the anterior, middle and posterior intestinal regions. The anterior intestine from SW fish showed considerably less water, sodium and chloride absorption compared with that seen in FW fish. The middle intestine showed either minimal absorption or some secretion in both FW and SW. In the posterior intestine, water absorption was only limitedly affected by SW-adaptation, but sodium and chloride absorption rates were significantly lower in SW fish. Reductions in water absorption were already evident in the anterior intestine 24 h after transfer to 1/3 SW but reached lower levels 3 to 5 days following transfer to 100% SW. Thus, the anterior intestine of tilapia responds to increased environmental salinity by decreasing uptake of ions, whereas the posterior intestine maintains similar water absorption in both FW and SW, although ion absorption is lower in SW.Prolactin administration to SW fish augmented sodium and water absorption in the anterior intestine but had no effect on chloride absorption. In contrast, cortisol administration to FW fish decreased absorption of sodium, chloride and water to levels usually seen in SW fish. The observed effects of these hormones in tilapia intestinal absorption may be confined to the specialized anterior intestinal region in this species; hormonal effects on the rest of the intestine were not examined.  相似文献   

9.
10.
The southern flounder is a euryhaline teleost that inhabits ocean, estuarine, and riverine environments. We investigated the osmoregulatory strategy of juvenile flounder by examining the time-course of homeostatic responses, hormone levels, and gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein expression after salinity challenge. Transfer of freshwater (FW)-acclimated flounder to sea water (SW) induced an increase in plasma osmolality and cortisol and a decrease in muscle water content, plasma insulin-like growth factor I (IGF-I) and hepatic IGF-I mRNA, all returning to control levels after 4 days. Gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein levels were elevated in response to SW after 4 days. Transfer of SW-acclimated flounder to FW reduced gill Na(+),K(+)-ATPase and Na(+),K(+),2Cl(-) cotransporter protein, increased plasma IGF-I, but did not alter hepatic IGF-I mRNA or plasma cortisol levels. Gill claudin-3 and claudin-4 immunoreactive proteins were elevated in FW versus SW acclimated flounder. The study demonstrates that successful acclimation of southern flounder to SW or FW occurs after an initial crisis period and that the salinity adaptation process is associated with changes in branchial expression of ion transport and putative tight junction claudin proteins known to regulate epithelial permeability in mammalian vertebrates.  相似文献   

11.
With a view to test how the branchial and intestinal tissues of fish, the two sites of metal acquisition, utilize the water-borne ferric [Fe(III)] iron and whether the accumulation of this form of iron influences cellular Na/K gradient in these tissues, the gills and intestines of climbing perch adapted to freshwater (FW) and acclimated to dilute seawater (20 ppt; SW) were analyzed for ouabain-sensitive Na+, K+-ATPase activity, Fe and electrolyte contents after loading a low (8.95 microM) or high dose (89.5 microM) of Fe(III) iron in the water. The SW gills showed higher levels of total Fe after treating with 8.95 microM of Fe(III) iron which was not seen in the FW gills. Na+, K+-ATPase activity, reflecting Na/K pump activity, showed an increase in the FW gills and not in the SW gills. Substantial increase in the branchial Na and K content was observed in the SW gills, but the FW gills failed to show such effects after Fe(III) loading. The total Fe content was declined in the FW intestine but not in the SW intestine. Water-borne Fe(III) iron decreased the activity of Na+, K+-ATPase in the SW intestine while not changing its activity in the FW intestine. The Na and K content in the FW intestine did not respond to Fe(III) iron exposure but showed a reduction in its Na levels in the SW intestine. The moisture content in the gills and intestines of both the FW and SW perch remained unaffected after Fe(III) loading. In FW fish, the plasma Na levels were decreased by a low dose of Fe(III) iron, though a high dose of Fe(III) iron was required in the SW fish for such an effect. Overall, the results for the first time provide evidence that gills act as a major site for Fe(III) iron absorption and accumulation during salinity acclimation which depends on a high cellular Na/K gradient.  相似文献   

12.
10 New experimental devices are described which allow chonic measurements of drinking rate and osmotic gill permeability in the eel. 20 The oesophagus of the seawater (SW) silver eel plays a role in osmoregulation. It decreases the concentration of Cl- and Na+ of the ingested SW without losing water in the serosal to mucosal direction. This allows for immediate water absorption in the intestine and decreases the quantity of ions actively absorbed by the intestine. In the freshwater (FW) silver eel, the oesophagus is impermeable to water, Cl- and Na+. The ionic impermeability exists only in the serosal to mucosal direction. A mucosal to serosal permeability to Cl- and Na+ exists in the FW oesophagus receiving hypertonic drinking water, this promotes seawater adaptation. 30 The osmotic gill permeability, measured in vivo in the silver eel, is very low in FW and decreases slightly in SW. Thus, the silver eel has an osmotic gill permeability preadapted to SW life. The kinetics of FW to SW adaptation are described.  相似文献   

13.
The ability to transition from freshwater to seawater environments is an intrinsic requirement of the life history of some fish species, including the anadromous rainbow trout (Oncorhynchus mykiss). The differences between hyper- and hypoosmoregulation are developed quickly (in hours to days), and at all scales, from gene expression to organ function. In this study, intestinal ion and water transport was examined in O. mykiss following acute transfer from freshwater (FW) to 70% seawater (SW). Plasma [Mg2+] increased at 24h post-transfer but recovered by 72 h. In the intestinal fluids, total CO? was found to increase with SW exposure/acclimation, while [Na+] decreased after 24h of SW exposure. Overall, in vitro experiments demonstrated the importance of base secretion to epithelial water uptake, and suggested that the primary physiological adjustments occurred 24-72 h after acute SW transfer. The mRNA expression of ion transporters important for intestinal osmoregulation and maintenance of acid-base balance was also investigated. A Na+/H+ exchanger (NHE2) and anion exchanger (SLC26a6) were hypothesized to be involved in the transport of acid-base equivalents, Na+, and Cl?, but were not uniformly expressed across tissue samples, and expression, where present, did not change following salinity transfer. NHE1, however, was expressed in all examined tissues (gill, kidney, anterior intestine, and pyloric cecae), but exhibited no changes in expression following acute salinity transfer.  相似文献   

14.
15.
We have developed a technique for immunocytochemistry of fish gill cells that we used to quantify tilapia (Oreochromis mossambicus) mitochondria-rich cells (MRC) and other gill cells (non-MRC) within different cell cycle phases by laser scanning cytometry. Gill cells fixed on coverslips were triple stained with propidium iodide to distinguish G1 vs. G2 phases, Ser10-phosphorylated histone H3 antibody to label mitotic cells, and Na(+)/K(+) ATPase antibody to label MRC. These parameters were measured at 0 (control), 4, 8, 16, 24, 48, 72, and 168 hr (1 week) following exposure of freshwater (FW) acclimated fish to 2/3 seawater (SW). MRC increased mitotic activity very rapidly peaking at 8 hr following SW exposure. This change in mitotic MRC is indicative of epithelial reorganization during SW acclimation. In contrast to MRC, the proportion of non-MRC (likely pavement cells (PVC)) in mitosis did not change significantly in response to SW exposure. Moreover, twice as many MRC were in mitosis compared with non-MRC, suggesting that MRC turn over faster than other cell types during SW acclimation. Following the mitosis peak, MRC accumulated in G2 phase over a period of 16-72 hr post-SW exposure. We also observed G2 arrest with similar kinetics following SW exposure in tilapia non-MRC (likely PVC). We interpret the G2 arrest that occurs after an initial wave of transient increase in MRC mitosis as a means for conserving energy for dealing with the osmotic stress imposed during the exposure of FW fish to SW.  相似文献   

16.
In the branchial mitochondrion-rich (MR) cells of euryhaline teleosts, the Na+/K+/2Cl cotransporter (NKCC) is an important membrane protein that maintains the internal Cl concentration, and the branchial Na+/K+-ATPase (NKA) is crucial for providing the driving force for many other ion-transporting systems. Hence this study used the sailfin molly (Poecilia latipinna), an introduced aquarium fish in Taiwan, to reveal that the potential roles of NKCC and NKA in sailfin molly were correlated to fish survival rates upon salinity challenge. Higher levels of branchial NKCC were found in seawater (SW)-acclimated sailfin molly compared to freshwater (FW)-acclimated individuals. Transfer of the sailfin molly from SW to FW revealed that the expression of the NKCC and NKA proteins in the gills was retained over 7 days in order to maintain hypoosmoregulatory endurance. Meanwhile, their survival rates after transfer to SW varied with the duration of FW-exposure and decreased significantly when the SW-acclimated individuals were acclimated to FW for 21 days. Double immunofluorescence staining showed that in SW-acclimated sailfin molly, NKCC signals were expressed on the basolateral membrane of MR cells, whereas in FW-acclimated molly, they were expressed on the apical membrane. This study illustrated the correlation between the gradual reductions in expression of branchial NKCC and NKA (i.e., the hypoosmoregulatory endurance) and decreasing survival rates after hyperosmotic challenge in sailfin molly.  相似文献   

17.
In the pituitary, the PAS-positive calcium-sensitive (Ca-s) cells of the pars intermedia appear less active in seawater (SW)- than in freshwater (FW)-adapted eels. The kinetics of their response during adaptation to SW or readaptation to FW was investigated. Morphometric studies show that transfer to SW induces a rapid nuclear atrophy which accentuates in eels kept for several weeks in SW. Readaptation to FW stimulated the Ca-s cells after 2–10 days; after 1 or 2 months, the cells tend to be similar to those of eels kept in FW. Plasma calcium decreases slightly but significantly in SW eels. The response of the Ca-s cells is not modified by an ovine prolactin treatment inducing hypercalcemia, hypernatremia and stimulation of the corpuscles of Stannius. Minor changes occurring in the MSH cells remain difficult to interpret; the short stimulation during readaptation to FW may be related to a stress effect and/or to release of other peptides present in the MSH cells of fish.  相似文献   

18.
The effect of osmotic shock was investigated mainly in the chloride cells (CCs) and rodlet cells (RCs) of gills, and RCs of intestine and kidney of the European sea bass Dicentrarchus labrax obtained from a farm in the northern Adriatic Sea. During the experiment, fish were abruptly transferred from sea water to a salinity of 15 (15 SW) or to fresh water (FW). Numeric variation and ultrastructural changes of both cell types were evaluated at 24, 48 and 96 h after the transfer to lower salinity levels, using light and transmission electron microscopy (TEM). Exposure to FW produced a significant increase ( P < 0·05) in the number of branchial CCs and RCs within 96 and 24 h, respectively. Following osmotic challenge (either transfer to 15 SW or FW), kidney and intestine showed an evident increase in RC numbers. The cellular damage detected by TEM was the same for each sampling time (24, 48 and 96 h), but appeared more severe in fish exposed to FW (higher osmotic shock) than in those exposed to 15 SW. In RCs cytoplasmic vacuolizations, autophagosomes and autophagolysosomes with myelinoid bodies, dissolution and shrinkage of the typical inclusions were documented. Nevertheless, CCs showed vacuolization of endoplasmic reticulum and cytoplasmic dissolution and maintained the apical crypt typical of seawater acclimated fish. Renal tubular cells and intestinal epithelial cells showed similar changes to those reported for CCs and RCs.  相似文献   

19.
20.
Transepithelial potentials (TEP) were measured in killifish, acclimated to freshwater (FW), seawater (SW), 33% SW or cycling salinities relevant to tidal cycles in an estuary, and subsequently subjected to salinity changes in progressive or random order. Random compared to progressive salinity changes in an upward or downward direction in FW- and SW-acclimated fish, respectively, did not greatly influence responses to salinity change. Fish acclimated to SW or 33% SW as well as those acclimated to cycling salinities behaved similarly (TEP more positive than +15 mV in 100% SW, decreasing to ~0 mV at 20–40% SW, and more negative than −30 mV in FW). In contrast, FW-acclimated fish displayed a less pronounced TEP response to salinity (0 mV in FW through 20% SW, increasing thereafter to values more positive than +10 mV at 100% SW). We conclude that when evaluated under estuarine tidal conditions, the killifish gill exhibits adaptive electrical characteristics, opposing Na+ loss at low salinity and favouring Na+ extrusion at high salinity, changes explained at least in part by the Cl to Na+ permeability ratio. Thus animals living in the estuaries can move to lower and higher salinities for short periods with little physiological disturbance, but this ability is lost after acclimation to FW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号