首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic variability of seven Phaseolus taxa has been evaluated on the basis of molecular data and the results have used to clarify the phyletic relationships between several taxa of the P. coccineus L. complex. Chloroplast DNA (cpDNA) from 33 populations was digested with six restriction endonucleases, revealing some polymorphisms that made it possible to divide most of the taxa into two main groups: the subspecies of P. coccineus on the one hand, and P. vulgaris L., P. polyanthus Greenman and P. costaricensis (Freytag and Debouck) on the other hand. P. polyanthus is closer to P. vulgaris than the other taxa of the second group and should be considered as a separate species. The position of the wild species P. costaricensis is intermediate between P. coccineus and P. polyanthus. P. glabellus shows sufficient polymorphisms at the cpDNA level to be recognized as a separate species, as previously suggested from total seed-protein electrophoretic studies. These results favour the hypothesis of a common phylogeny for P. vulgaris, P. polyanthus, P. costaricensis and P. coccineus from a single wild ancestor. Although cpDNA is generally known to be uniform at the intraspecific level, some additional polymorphisms were also detected within P. vulgaris, P. polyanthus and P. coccineus. Further studies are required to understand the significance of the latter.  相似文献   

2.
Previous results have shown that cytoplasmic male sterility (CMS) in lines from Phaseolus coccineus and Phaseolus vulgaris contain the same CMS-specific sequence, raising the question of whether this sequence rearrangement arose before divergence of the two species or afterward with subsequent transfer by introgression. Hybridization patterns of total DNA from eight P. vulgaris lines with cytoplasm from P. coccineus and three P. vulgaris lines were examined in order to analyze the mitochondrial DNA (mtDNA) diversity within each species and to determine differences between CMS lines derived from the two species. Three restriction enzymes and 17 heterologous mtDNA sequences were used. The analysis of the different hybridization patterns revealed a considerable diversity in mtDNA organization particularly within P. coccineus. We obtained distinctive hybridization patterns for the five CMS lines tested. The resulting classification showed that mitochondrial genomes from P. coccineus CMS lines group with those of fertile P. coccineus but not with CMS lines from P. vulgaris. The groupings concur with the taxonomic classification of these lines. The results support the hypothesis of a single ancient origin of the CMS determinant and exclude the transfer of cytoplasm by introgression from P. vulgaris to P. coccineus and P. coccineus ssp polyanthus.  相似文献   

3.
Phylogenetic analysis of chloroplast DNA (cpDNA) restriction site variation supports a close genetic relationship between the Southwest AsianSenecio flavus subsp.breviflorus and the North AmericanS. mohavensis. The intercontinental disjunct distribution of these two desert annuals may have originated via long distance dispersal. The chloroplast genomes of the Southern and North AfricanS. flavus subsp.flavus and subsp.breviflorus differ by at least ten restriction sites, while at most two restriction sites differentiate the cpDNA genomes of subsp.breviflorus and the outgroupS. squalidus. This suggests that the cpDNA genome ofS. flavus subsp.breviflorus may have resulted from introgression and chloroplast capture with a Mediterranean species related toS. squalidus. This hypothesized introgression could account for the morphological distinctiveness and duplicated isozyme loci ofS. flavus subsp.breviflorus relative to subsp.flavus.  相似文献   

4.
The relationship ofAmbrosia (ragweed) andFranseria has long been debated. Their treatment as separate genera has been repeatedly challenged. In this study, chloroplast DNA restriction site variation was examined for species from bothAmbrosia andFranseria as well as taxa from the closely related genusHymenoclea. The chloroplast genomes of members of these three genera were examined using 21 restriction endonucleases and the restriction mutations were used to construct phylogenetic trees. Wagner and Dollo parsimony as well as weighted parsimony were employed to compare the different phylogenies. The results support a close relationship betweenAmbrosia andFranseria, but indicate that the two groups are well separated. Compared toFranseria, Ambrosia is a much more strongly supported group, and the results indicate thatHymenoclea is closer toFranseria than toAmbrosia. The cpDNA phylogeny was used as a framework to examine evolutionary trends in morphology and secondary chemistry.  相似文献   

5.
The restriction site and size variation of five PCR amplified fragments of noncoding chloroplast DNA (cpDNA) was examined in material from 13 populations ofPanax from Nepal and China. Fourteen restriction endonucleases produced 81 restriction site and length variations from the large single-copy region of cpDNA, 27 of which are polymorphic. The cpDNA dataset suggests two distinct groups ofPanax from Nepal (clades I and II). Clade I consists of two populations ofP. pseudoginseng subsp.pseudoginseng, and clade II is composed of material referable toP. pseudogingeng subsp.himalaicus (vars.himalaicus, angustifolius, andbipinnatifidus). The three accessions ofP. pseudoginseng subsp.japonicus andP. ginseng studied from China had cpDNA characters that differed from the HimalayanPanax. The highly distinctive cpDNA profile and morphology ofP. pseudoginseng subsp.pseudoginseng sensu Hara (1970) from central Nepal support its status as a separate species, which has an extremely restricted distribution.  相似文献   

6.
Polygalacturonase-inhibiting protein (PGIP) is a cell wall protein which inhibits fungalendopolygalacturonases. A small gene family encodesPGIP in the genome of common bean, as indicated by Southernblot experiments performed at high-stringency conditions. Southern-blot analysis of DNA extracted from different cultivars ofPhaseolus vulgaris and fromPhaseolus coccineus showed length polymorphism of the hybridizing restriction fragments. The cytological localization of thePGIP genes was determined in polytene chromosomes of theP. vulgaris embryo suspensor cells. In-situ hybridization experiments using the clonedPGIP gene revealed labelling over a single region of the pericentromeric heterochromatin of chromosome pair X, next to the euchromatin, suggesting thatPGIP gene family may be clustered in one chromosomal region.  相似文献   

7.
 Chloroplast DNA (cpDNA) diversity has been examined using PCR-RFLP and RFLP strategies for phylogenetic studies in the genus Phaseolus. Twenty-two species, including 4 of the 5 cultivated species (P. lunatus L., the Lima bean; P. vulgaris L., the common bean; P. coccineus L., the runner bean and P. polyanthus Greenman, the year-bean), represented by 86 accessions were included in the study. Six PCR primers designed from cpDNA and a total cpDNA probe were used for generating markers. Phylogenetic reconstruction using both Wagner parsimony and the neighbor-joining method was applied to the restriction fragment data obtained from each of the molecular approaches. P. vulgaris L. was shown to separate with several species of largely Mesoamerican distribution, including P. coccineus L. and P. polyanthus Greenman, whereas P. lunatus L. forms a complex with 3 Andean species (P. pachyrrhizoides Harms, P. augusti Harms and P. bolivianus Piper) co-evolving with a set of companion species with a Mesoamerican distribution. Andean forms of the Lima bean are found to be more closely related to the 3 Andean wild species than its Mesoamerican forms. An Andean origin of the Lima bean and a double derivative process during the evolution of P. lunatus are suggested. The 3 Andean species are proposed to constitute the secondary gene pool of P. lunatus, while its companion allies of Mesoamerican distribution can be considered as members of its tertiary gene pool. On the basis of these data, an overview on the evolution of the genus Phaseolus is also discussed. Received: 1 May 1998 / Accepted: 13 July 1998  相似文献   

8.
Chloroplast DNA (cpDNA) and isozyme variation were analyzed over a range of populations of two infraspecific taxa of the tetraploidSenecio vulgaris. The isozyme data were supportive of the hypothesis that the weedy and cosmopolitanS. vulgaris var.vulgaris is an evolutionary derivative ofS. vulgaris subsp.denticulatus from the coasts of W Europe and montane altitudes in S Spain and Sicily. The two taxa exhibited a very high genetic identity with subsp.denticulatus containing slightly more isozyme diversity than was found in var.vulgaris. — Three cpDNA haplotypes (A, B, C) already known from other Mediterranean diploid species ofSenecio were resolved in var.vulgaris, and an additional fourth haplotype (E) was found in subsp.denticulatus. Two alternative hypotheses were chosen to account for the origin and maintenance of the observed cpDNA composition ofS. vulgaris. It either reflects (1) the retention of an ancestral polymorphism which stems from the recurrent and polytopic formation of ancestral tetraploid lineages; or (2)S. vulgaris originally was characterized by haplotype E, and haplotypes A, B and C were acquired through repeated introgressive hybridization with related diploid species. The finding that very low levels of nuclear (isozyme) diversity were present in both taxa ofS. vulgaris examined supports the second of these two hypotheses; however, more detailed analysis of nuclear genetic diversity is required before a firm conclusion can be reached on this matter.Dedicated to emer. Univ.-Prof. DrFriedrich Ehrendorfer on the occasion of his 70th birthday  相似文献   

9.
Restriction site mapping of chloroplast DNA from 31 species representing 26 genera of theRanunculaceae was performed using eleven restriction endonucleases. The chloroplast genome varies in length from approximately 152 to 160 kb. Length variants are frequent in theRanunculaceae and range from usually less than 300 bp to rarely 1.5 kb. The inverted repeat is extended into the large single copy (LSC) region by 4–4.5 kb inAnemone, Clematis, Clematopsis, Hepatica, Knowltonia, andPulsatilla. Several inversions are present in the LSC-region of the cpDNA in all these genera and inAdonis. The frequency of restriction site mutations varies within the chloroplast genome in theRanunculaceae between 4 and 32 mutations per kilobase, and is lowest in the inverted repeat and the regions containing the ATPase-genes and the genespsaA, psaB, psbA, rpoB, andrbcL. A total of 547 phylogenetically informative restriction sites was utilized in cladistic analyses of the family using Wagner, Dollo, and weighted parsimony. These three parsimony analyses result in different tree topologies. Four, six, and one equally most parsimonious trees were obtained with Wagner, Dollo, and weighted parsimony, respectively. The amount of support for the monophyletic groups was evaluated using bootstrapping and decay analysis. All three parsimony methods suggest thatHydrastis is the sister group to the remainder of theRanunculaceae, and that theAnemone-Clematis group, which shares several derived cpDNA rearrangements, is monophyletic. Only a few of the traditional groups in theRanunculaceae are supported by cpDNA restriction side data. Only Dollo parsimony provides support for the hypothesis thatThalictroideae andRanunculoideae are monophyletic.  相似文献   

10.
Pinus species exhibit paternal chloroplast inheritance and maternal mitochondrial inheritance. This independent inheritance of two cytoplasmic genomes provides an exceptional environment for discriminating female (seeds) and male (pollen) components of gene flow across hybridizing species. We obtained mitochondrial genetic markers diagnostic toP. parviflora var.pentaphylla andP. pumila by PCR amplification of the intron ofnad1 on mtDNA, and examined the spatial-distribution pattern of the mtDNA haplotypes in a hybrid zone betweenP. parviflora var.pentaphylla andP. pumila in the Tanigawa Mountains of Japan. These data, in conjunction with previous information on cpDNA haplotypes and needle morphology, revealed contrastive patterns of introgression of two cytoplasmic genomes. CpDNA introgression has occurred uni-directionally fromP. parviflora var.pentaphylla toP. pumila. Conversely, mtDNA introgression has occurred in the opposite direction, fromP. pumila toP. parviflora var.pentaphylla. Levels of introgression are roughly equivalent for cpDNA and mtDNA. The contrastive spatial distribution pattern of cpDNA and mtDNA haplotypes could be caused by differential movement of seeds and pollen for interspecific genetic exchange.  相似文献   

11.
Summary The restriction profiles of chloroplast DNA (cpDNA) from Nicotiana tabacum, N. sylvestris, N. plumbaginifolia, and N. otophora were obtained with respect to AvaI, BamHI, BglI, HindIII, PstI, PvuII, SalI, and XhoI. An efficient mapping method for the construction of cpDNA physical maps in Nicotiana was established via a computer-aided analysis of the complete cpDNA sequence of N. tabacum for probe selection. The efficiency of this approach is demonstrated by the determination of cpDNA maps from N. sylvestris, N. plumbaginifolia, and N. otophora with respect to all of the above restriction endonucleases. The size and basic structure of the cpDNA from the three species are almost identical, with an addition of approximately 80 bp in N. plumbaginifolia. The restriction patterns and hence the physical maps between N. tabacum and N. sylvestris cpDNA are identical and there is no difference in the Pvull digests of cpDNA from all four species. Restriction site variations in cpDNA from different species probably result from point mutations, which create or eliminate a particular cutting site, and they were observed spanning the whole chloroplast molecule but highly concentrated in both ends of the large, single-copy region. The results presented here will be used for the forthcoming characterization of chloroplast genomes in the interspecies somatic hybrids of Nicotiana, and will be of great value in completing the exploration of the phylogenetic relationships within this already extensively studied genus.  相似文献   

12.
Summary Restriction patterns of mitochondrial DNA (mtDNA) from threePhaseolus species were examined to estimate their relative genome sizes and to determine the level of interspecific variability and relatedness. Three restriction endonucleases that produced relatively simple profiles were identified and used to determine the genome size of the three species. Taking into account fragment stoichiometries, the average estimates across enzymes were 456, 324, and 400 kb, respectively, forP. vulgaris, P. coccineus, andP. acutifolius. Restriction fragment length polymorphisms (RFLPs) differentiated the species when the mtDNAs were digested with seven endonucleases and hybridized with five cosmid clones covering ca. 200 kb of mtDNA sequences. Proportions of shared restriction fragments between every two species were computed as F-values and demonstrated thatP. vulgaris andP. coccineus are more related to each other than either is toP. acutifolius, and that the latter has a similar degree of relationship to the other two species.  相似文献   

13.
A clone-bank ofSac I restriction fragments was constructed from the chloroplast DNA (cpDNA) ofLobelia thuliniana E. B. Knox (Lobeliaceae). These cloned fragments and a set of 106 clones spanning the tobacco chloroplast genome were used as probes to determine the cpDNA restriction fragment arrangement forSac I and six other restriction enzymes (BamH I,EcoR V,Hind III,Nci I,Pst I, andXho I) and the chloroplast genome arrangement ofL. thuliniana relative to tobacco, which has been fully sequenced and is collinear with the hypothesized ancestral genome arrangement of angiosperms. The results confirm and refine our previous understanding of the chloroplast genome arrangement in the large single-copy region (LSC) and reveal (1) a roughly 11 kilobase (kb) expansion of the inverted repeat (IR) into the small single-copy region (SSC) and (2) apparent sequence divergence of the DNA segment inL. thuliniana that corresponds to ORF1901 in tobacco. The expansion of the IR into the SSC is present in all other examined members ofLobeliaceae, Cyphiaceae, andCampanulaceae, which indicates that the IR expansion was an early event in the cpDNA evolution of theCampanulales. The IR expansion into the SSC was not present inSphenoclea, which additionally supports exclusion of this genus from theCampanulaceae.  相似文献   

14.
25 populations from Turkey and one of Syria belonging to theSabulina section of the genusMinuartia have been karyologically examined. New chromosome numbers have been recorded forM. mesogitana andM. hybrida subsp.turcica, and a new variety was found in theM. hybrida complex. The origin of the taxa with n = 23 and n = 35 is discussed.
  相似文献   

15.
Summary Genetic variation in Phaseolus vulgaris L. (P. vulgaris) was investigated at the isozyme and DNA levels. We constructed a library of size-selected Pst I clones of P. vulgaris nuclear DNA. Clones from this library were used to examine 14 P. vulgaris accessions for restriction fragment length polymorphisms (RFLPs). DNAs from each accession were analyzed with three restriction enzymes and 18 single copy probes. The same accessions were also examined for variability at 16 isozyme loci. Accessions included four representatives of the T phaseolin group and five representatives each of the C and S phaseolin groups. One member of the S group (the breeding line XR-235-1-1) was derived from a cross between P. vulgaris and P. coccineus. Isozymes and RFLPs revealed very similar patterns of genetic variation. Little variation was observed among accessions with C and T phaseolin types or among those with the S phaseolin type. However, both isozyme and RFLP data grouped accessions with S phaseolin separately from those accessions with C or T phaseolin. The highest degree of polymorphism was observed between XR-235-1-1 and members of the C/T group. RFLP markers will supplement isozymes, increasing the number of polymorphic loci that can be analyzed in breeding, genetic, and evolutionary studies of Phaseolus.  相似文献   

16.
A phylogenetic analysis ofPanax was performed using restriction site variations of eight PCR-amplified chloroplast regions. Twenty populations were examined, representing 13 of the 14 species ofPanax. Aralia cordata was used as the outgroup. The 11 restriction endonucleases produced a total of 105 restriction sites and length variations from the large single-copy region of cpDNA. Forty restriction variations are polymorphic. The cpDNA tree is largely congruent with the nuclear ribosomal ITS phylogeny. Similar to the ITS tree, the cpDNA dataset suggests the following relationships: (1)P. trifolius from eastern North America is sister to the clade consisting of all otherPanax species; (2)P. ginseng andP. japonicus from eastern Asia form a clade withP. quinquefolius from eastern North America; (3) the HimalayanP. pseudoginseng is most closely related toP. stipuleanatus of southwestern China; and (4) the medicinally importantP. notoginseng forms a clade with the closely relatedP. bipinnatifidus, P. ginseng, P. japonicus, P. major, P. quinquefolius, P. sinensis, P. wangianus, andP. zingiberensis. Two biogeographic disjunctions are detectable withinPanax. One is the connection of the eastern North AmericanP. trifolius with the rest ofPanax species. The other is the more recent disjunction between the North AmericanP. quinquefolius and the eastern AsianP. ginseng andP. japonicus. The active orogenies caused by the collision of the Indian Plate with Asia may have facilitated the diversification ofPanax taxa in Asia in the late Tertiary.  相似文献   

17.
Summary At the globular stage of embryo development, the level of DNA, as determined from microspectrophotometric analysis of Feulgen-stained squashes, was significantly higher in the interspecific hybrid suspensor than in suspensors from self-pollination of Phaseolus coccineus, the maternal parent. However, at the early-heart and early-cotyledonary stages of development, DNA content of interspecific hybrid suspensors was significantly lower than that of suspensors formed after self-pollination of either P. coccineus or P. vulgaris. The relationship between DNA content and suspensor cell length for P. coccineus and P. vulgaris at all developmental stages and between DNA content and cell area for P. coccineus at the early-cotyledonary stage was altered in hybrid suspensor cells. Nuclei in large cells of interspecific suspensors exhibited uneven distribution of polytene chromosomes and no clear nuclear outline.Paper number 18,470 of the Scientific Journal Series, University of Minnsota Agricultural Experiment Station, St. Paul, MN. This research was funded by the USDA CRGO under grant number USDA-85-CRCR-1-1676  相似文献   

18.
Chloroplast DNA (cpDNA) from 36 wild species of the genus Helianthus has been analysed with three restriction endonucleases (Bam HI, Hind III and Sst I). Out of the 71 restriction sites described on the reference cpDNA (sunflower cpDNA), three insertions/deletions and seven site modifications were detected during the survey of the other cpDNAs.Since restriction mapping showed only a very limited fraction of the DNA variability, we chose to adapt the S1 nuclease mapping technique to detect fine variations between chloroplast genomes. For this purpose, DNA-DNA heteroduplexes obtained between sunflower and wild-species DNAs were digested by S1 nuclease and the resulting mismatches were detected by classical endonuclease restriction and hybridization methods. The S1 nuclease mapping results were confirmed by sequencing one S1 nuclease-sensitive region detected between cultivated sunflower and two perennial wild-type species.As a result of these analyses, it appeared that the combination of restriction mapping and S1 nuclease mapping might be helpful to differentiate taxonomically close cytoplasms.  相似文献   

19.
Phylogenetic relationships within the angiosperm orderCampanulales were investigated by comparative sequencing of the chloroplast generbcL. CompleterbcL sequences were obtained for ten species in six families within the order. These data were analyzed along with previously publishedrbcL sequences from other taxa (for a total of 117 species) within the subclassAsteridae and outgroups, producing 32 equally parsimonious trees. A subset consisting of 44 of these taxa was then chosen and more rigorous analyses performed, resulting in four equally parsimonious trees. Results indicate that two major clades roughly corresponding to traditionally circumscribedAsterales andCampanulales exist as sister taxa. In particular, therbcL trees indicate thatSphenoclea is not a member ofCampanulales orAsterales, thatPentaphragma is more closely allied toAsterales thanCampanulales, that theCyphiaceae are not monophyletic, thatCampanulaceae andLobeliaceae are not sister taxa, and thatStylidiaceae are correctly placed withinCampanulales.  相似文献   

20.
Summary The interrelationships of Beta chloroplast genomes have been investigated on the basis of the analysis of Fraction I protein and chloroplast (ct) DNA. Three groups of the chloroplast genomes could be demonstrated by the difference in isoelectric points of the large subunit of Fraction I protein. Restriction enzyme analysis revealed inter- and intra-specific variations among the ctDNAs, which enabled us to detect seven distinct ctDNA types. In Vulgares and Corollinae species, the observed differences were physically mapped taking advantage of the restriction fragment map available for sugar beet (B. vulgaris) ctDNA. The DNA variations were found to result either from gains or losses of restriction sites or from small deletions/ insertions, and most of them were located in the large single-copy region of the genome. Moreover, the ctDNAs from Patellares species are more diverged from those of other Beta taxa. Our results also indicate that there is a close correlation between the chloroplast genome diversity and the accepted taxonomic classification of the species included in this survey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号