首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The growth of the cultured human breast carcinoma cell line NUB 1 as well as that of other cultured malignant cells has been shown to be inhibited by addition of gamma-linolenic acid (GLA) to the culture medium. It has previously been suggested that these findings may be attributed to correction of a GLA deficiency in malignant cells, with supplementation of this fatty acid leading to increased prostaglandin (PG) production and consequent growth inhibition. To test this hypothesis the effect of 50 micrograms/ml concentrations of GLA and its sequential metabolite dihomo-gamma-linolenic acid (DGLA) and cell growth, morphology and prostaglandin (PGE and PGF) production by NUB 1 cells was investigated. GLA increased PGE and PGF production, inhibited cell growth and caused accumulation of lipid containing cytoplasmic granules. While treatment with DGLA increased PG production to a significantly greater extent than GLA administration it had no apparent effect on cell growth of morphology and did not inhibit cell growth. These findings suggest that some action other than the ability to increase PG production may be responsible for the inhibitory effects produced by GLA in malignant cells.  相似文献   

2.
Several studies have demonstrated that certain essential fatty acids present a specific cytotoxicity for tumor cells. However, no investigation of this type has been performed on human colon cancer cells to date. This study investigated the effect of gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA) and prostaglandin (PG) E1 on the proliferation and metabolism of three human colon cancer cell lines: HT 29, HRT 18, and CACO 2. GLA, EPA and PGE1 all inhibited the proliferation of the three cell lines, but with a decreasing gradient of sensitivity: HRT 18 > HT 29 > CACO 2, and with different IC50 values. PGE1 was markedly less effective than the other two. GLA and EPA increased lipid peroxidation and membrane fluidity in a dose-dependent manner. The presence of indomethacin did not modify the effects of GLA and EPA. In addition, PGE1 had little effect on membrane fluidity and lipid peroxidation. The antitumoral effect thus does not appear to be mediated by PGE1. Addition of vitamin E decreased the effects of GLA and EPA, which supports the hypothesis of direct action by these fatty acids. In conclusion, while EPA and GLA have an antitumoral effect in vitro, their effect on primary cultures of normal human colon cells must be investigated to determine whether this effect is specific to tumoral cells, as has been observed for other cell types.  相似文献   

3.
The effects of exogenous gamma-linolenic acid (GLA), arachidonic acid (AA), prostaglandin E2 (PGE2) and prostaglandin A2 (PGA2) were evaluated on cell growth in two squamous oesophageal carcinoma cell lines, WHCO1 and WHCO3 and normal monkey kidney (NMK) cells. In both cancer cell lines all four compounds inhibited cell growth significantly. Indomethacin (I) alone, or in combination with either GLA or AA, caused marked inhibition of cell growth in WHCO3. Total tyrosine kinase (TK) activity was determined after exposure of all three cell types to the lipid compounds. Negligible differences were observed in TK activity between treated and untreated NMK cells. Small increases were noticed in WHCO1. Marked TK stimulation was observed in WHCO3. Addition of indomethacin to WHCO3 also increased TK activity above control value. Tyrosine phosphorylation status of exposed cells indicated that a band of approximately 55 kDa (approximately 55 kDa) was primarily influenced in both WHCO3 and WHCO1. PGA2 caused a decrease in tyrosine phosphorylation of the approximately 55 kDa protein in all three cell types. Negligible differences were observed in the tyrosine phosphorylation status of the approximately 55 kDa in NMK cells exposed to GLA, AA and PGE2 respectively. However, tyrosine phosphorylation of a number of other proteins (21.5-97.4 kDa) was observed in NMK cells. Flow cytometry studies showed an increase in S phase and decrease in G1 phase in WHCO3 exposed to PGE2 and PGA2. Indomethacin alone, or in combination with GLA and AA, respectively, lead to an increase in G1 and a decrease in S phase. Induction of p53 levels was observed in WHCO3 cells exposed to GLA, AA, PGA2, indomethacin and the combination of indomethacin and GLA or AA.  相似文献   

4.
The expression of "tissue" transglutaminase (tTG) in two human tumor cell lines (the cervix adenocarcinoma line HeLa-TV and the neuroblastoma cells SK-N-BE-2) was found to be in correlation with the rate of physiological cell death (apoptosis) in culture. We investigated the effect of retinoic acid (RA) and alpha-difluoromethylornithine (DFMO) in order to elucidate the relationship between tTG expression and apoptosis. RA led to a 6-fold increase of tTG activity in HeLa-TV cells and to a 12-fold increase in SK-N-BE(2) cells, which was paralleled in both cell lines by a proportional increase in the number of apoptotic bodies recovered from the cultures. On the contrary, DFMO determined a dramatic reduction of tTG expression and of the apoptotic index. Immunohistochemical analysis using an anti-tTG antibody showed that the enzyme was accumulated in both cell lines within typical apoptotic bodies. Immunocytochemistry and cell cloning of SK-N-BE(2) line demonstrated that tTG was absent in cells showing neurite outgrowth, indicating that the enzyme expression is not associated with neural differentiation, even though both phenomena are elicited by retinoic acid. On the whole, these data indicate that also in tumors tTG activation takes place in cells undergoing apoptosis. The enzyme is activated in apoptotic cells to form cross-linked protein envelopes which are insoluble in detergents and chaotropic agents. The number of insoluble protein envelopes as well as the N,N-bis(gamma-glutamyl)polyamine cross-links is related with both tTG expression and apoptotic index, strongly suggesting the participation of the enzyme in the apoptotic program.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effects of zinc, gamma-linolenic acid (GLA) and zinc combined and GLA supplementations on the growth of a benign monkey kidney, cell line (LLCMK) and a malignant tumour murine melanoma, cell line (BL-6) cells in vitro were studied. Cell growth was indicated by both cell counts and 3H-thymidine incorporation into DNA. The addition of zinc to the cells resulted in a general trend of overall reduction in the growth of tumour cells but not in the normal cells. The addition of GLA at high concentrations resulted in a general decrease in cell growth of both the benign and malignant tumour cells while the addition of lower concentrations of GLA had less effect. The combined effect of supplementary zinc and GLA resulted in an inhibitory effect on the growth of the malignant cells while a less and variable effect on the non-malignant cells was found. Some interaction between zinc and GLA in reducing tumour cell growth is suggested by the results.  相似文献   

6.
7.
8.
The effect of tumor necrosis factor-alpha (TNF-alpha) on neuronal viability has been investigated in the SK-N-BE neuroblastoma cell line. These cells undergo differentiation upon chronic treatment with retinoic acid. Exposure of SK-N-BE cells to TNF-alpha produced a proliferative response in undifferentiated cells, whereas a reduced cell number was observed in retinoic acid (RA)-differentiated cultures. This biphasic response may be related to the different expression of TNF-alpha receptors (TNFRs); a significant increase in the density of TNFR1 was in fact observed following RA-induced differentiation. Under these conditions, a pronounced increase in the formation of ceramide-1-phosphate (which was prevented by the selective inhibitor of phosphatidylcholine-specific phospholipase C, D609) and an activation of caspase-3 upon TNF-alpha challenge were evident. Selective blockade of each TNFR subtype allowed a more detailed analysis of the effect observed. Preincubation with an anti-TNFR1 antibody prevented the cytotoxic effect of TNF-alpha in RA-differentiated SK-N-BE cells, whereas the anti-TNFR2 antibody blocked the proliferative activity of the cytokine in undifferentiated cultures.  相似文献   

9.
Feeding rodents a diet rich in evening primrose oil (EPO), which contains 5-10 g gamma-linolenic acid (GLA)/100 g total fatty acids, has been shown to decrease lymphocyte proliferation and natural killer cell activity. However, EPO contains a very high level of linoleic acid which itself can affect lymphocyte functions and it is not clear to what extent the effects of EPO can be attributed to GLA. The current study investigated the effect of two levels of GLA in the rat diet upon immune cell functions; the level of linoleic acid was maintained below 30 g/100 g total fatty acids. Weanling rats were fed on high fat (178 g/kg) diets which contained 4.4 g or 10 g GLA/100 g total fatty acids in place of a proportion of linoleic acid. The total polyunsaturated fatty acid content and the n-6 to n-3 polyunsaturated fatty acid ratio of the diet were maintained at 35 g/100 g total fatty acids and 7, respectively. The fatty acid compositions of the serum and of spleen leukocytes were markedly influenced by that of the diet, with an increase in the proportions of GLA and dihomo-gamma-linolenic acid when the diets containing GLA were fed; these diets also increased the proportion of arachidonic acid in spleen leukocytes. Spleen lymphocyte proliferation in response to concanavalin A was significantly reduced (by 60%) by feeding the diet containing the higher level of GLA, but not by the diet containing the lower level of GLA. Spleen natural killer cell activity and prostaglandin E (PGE) production by spleen leukocytes were not significantly affected by inclusion of GLA in the diet, although there was a tendency towards decreased natural killer cell activity by cells from rats fed the high GLA diet. Thus, this study shows that dietary GLA is capable of altering the fatty acid composition of cells of the immune system and of exerting some immunomodulatory effects, but that the level of GLA in the diet must exceed 4.4 g/100 g total fatty acids for these effects to become apparent.  相似文献   

10.
gamma-Linolenic acid (GLA) is known to have selective tumoricidal action. In this study, the effect of lithium salt of GLA conjugated to iodized lymphographic oil (LGIOC) was injected intra-arterially close to the origin of tumor-feeding vessel(s) was studied. Four patients with stage 4 cancer disease (2 with hepatocellular carcinoma, 1 with giant cell tumor of the bone, and one with renal cell carcinoma), were selected for the study. Angiography, radiography and computed axial tomography were performed prior to and immediately after the injection of LGIOC and at periodic intervals. All four patients tolerated the treatment well. The most significant observation was the complete occlusion of the tumor-feeding vessels after LGIOC injection. Follow-up angiograms performed in all the patients showed occlusion of the tumor-feeding vessels is more or less permanent. A significant reduction in the size of the tumor was also observed in these patients. LGIOC showed occlusion of tumor-feeding vessels after infusion, and further studies are needed to confirm these preliminary results.  相似文献   

11.
Paracellular permeability (PCP) is governed by tight junctions (TJs) in epithelial cells, acting as cell-cell adhesion structures, the aberration of which is known to be linked to the dissociation and metastasis of breast cancer cells. This study hypothesized that the function of TJs in human breast cancer cells can be augmented by gamma linolenic acid (GLA), selenium (Se), and iodine (I) in the presence of 17-beta-estradiol, as these molecules are known to increase TJ functions in endothelial cells, using assays of trans-epithelial resistance (TER), PCP, immunofluorescence, and in vitro invasion and motility models. GLA, I, and Se individually increased TER of MDA-MB-231 and MCF-7 human breast cancer cells. The combination of all three agents also had a significant increase in TER. Addition of GLA/Se/I reduced PCP of both breast cancer cell lines. GLA/Se/I reversed the effect of 17-beta-estradiol (reduced TER, increased PCP). Immunofluorescence revealed that after treatment with Se/I/GLA over 24 h, there was increasing relocation to breast cancer cell-cell junctions of occludin and ZO-1 in MCF-7 cells. Moreover, treatment with GLA/Se/I, alone or in combination, significantly reduced in vitro invasion of MDA-MB-231 cells through an endothelial cell barrier (P < 0.0001) and reduced 17-beta-estradiol induced breast cancer cell motility (P < 0.0001). Our previous work has demonstrated that GLA, I, and Se alone, or in combination are able to strengthen the function of TJs in human endothelial cells; this has now proved to be true of human breast cancer cells. This combination also completely reversed the effect of 17-beta-estradiol in these cells.  相似文献   

12.
Liu QY  Tan BK 《Life sciences》2000,67(10):1207-1218
It has been reported that several cis-unsaturated fatty acids (c-UFAs) could increase doxorubicin (DOX) accumulation in cancer cells and hence elevate its cytotoxicity. However, some researchers showed that c-UFA pretreatment did not affect its cytotoxicity in special cell lines. It is possible that the different results occurred due to different cellular characteristics. We hypothesized that c-UFA treatment might modulate the activities of some antioxidant enzymes to affect the resistance of cells to DOX. In the present study, we examined how c-UFA pretreatment affected DOX cytotoxicity on mouse leukemia cell line, P388, and its resistant subline, P388/DOX, which we found to have significantly higher glutathione peroxidase (GPx) activity as well as P-glycoprotein (p-gp) overexpression. We chose two c-UFAs, gamma-linolenic acid (GLA) (18:3n-6) and docosahexaenoic acid (DHA) (22:6n-3). Cytotoxicity was measured by MTT (3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and trypan blue exclusion assays. DOX accumulation and p-gp expression were measured by flow cytometry. The activities of catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and GPx were determined for both cell lines with and without treatment with GLA or DHA. Significant DOX accumulation occurred in both cell lines with GLA or DHA pretreatment, but without any change in p-gp expression in either cell line. Sensitivity to DOX cytotoxicity was improved by GLA or DHA pretreatment in P388/DOX in which only SOD activity was significantly increased, but not in the parental cell line P388 in which both SOD and CAT were significantly increased by the pretreatment. However, combined pretreatment of GLA or DHA with antioxidants, pyrrolidinedithiocarbamate (PDTC) or Vitamin C, could sensitize not only P388/DOX but also P388 cells to DOX. We conclude that the effects of c-UFA pretreatment on the sensitivity of cancer cells to DOX not only depend on the change in drug accumulation but also the change in the levels of antioxidant enzyme activities, and suggest that combined administration of c-UFAs, antioxidants, and DOX may be more effective in treating leukemia.  相似文献   

13.
The fatty acid production characteristics of fungi are described. These characteristics are the relationship between the oil content of the cell and the fatty acid content of the oil. For example, for polyunsaturated fatty acid (PUFA) production by Mucor hiemalis IPD 51, the oil content of the cell and the GLA content of the oil are coupled. For fungal production of some PUFA, synthesized after the rate-limiting step in the fatty acid anabolic chain, a maximum fatty acid production model was developed to link the fatty acid content of the oil and the oil content of the cell. Maximum volumetric productivity of gamma linolenic acid (GLA) by molds was found to occur at a specific GLA content of the oil. For example, for M. hiemalis IPD 51, a maximum volumetric of 4.7 mg GLA/L . h was produced at a GLA content of the oil of 8% to 10%. Similarly for Mucor circinelloides v. Tieghem IPD 155 a maximum volumetric productivity of 4.8 mg GLA/L . h was produced at a GLA content of the oil of 14% to 16%. These results imply that, when screening microorganisms for GLA or other fatty acid production, a number of medium compositions need to be evaluated to determine the tradeoff between oil content of the cell and fatty acid content of the oil. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
15.
It is generally assumed that radiation-induced micronuclei (MN) in cytokinesis-blocked cells are an expression of cellular radiosensitivity. Therefore, radiosensitive cells should have a high frequency of MN and radioresistant cells should show lower levels. We have irradiated cells of a panel of 13 neuronal cell lines of widely differing radiosensitivity [human neuroblastomas: N2alpha, SHSY5Y, SK-N-SH, KELLY and SK-N-BE(2c); murine neuroblastomas: OP-6 and OP-27; human glioblastomas: G120, G60, G28, G112, G44 and G62] and compared their radiation response using the micronucleus and standard clonogenic assays. It was found that micronucleus frequency was much higher in some of the radioresistant cell lines (N2alpha, G28, G120 and G44; SF2 >/= 0.60). These cell lines showed a high frequency of more than 0.32 MN per gray of (60)Co gamma radiation per binucleated cell. On the other hand, the more radiosensitive cell lines (OP-27 and SK-N-SH, SF2 相似文献   

16.
Abstract γ-Linolenic acid (GLA) production using a high GLA producing marine green alga, Chlorella sp. NKG 042401, was studied. GLA was presented in the galactolipid fraction (37.9%/total fatty acids). The effects of growth conditions on GLA production were studied. Optimum salinity for GLA production was 5 g 1−1, at which salinity the highest cell concentration was achieved, resulting in a 1.6-fold increase in GLA productivity. Total fatty acid, however, was not drastically affected by change of salinity. Nitrogen starvation decreased the ratio of unsaturated fatty acids, and consequently GLA ratio in total fatty acid decreased. The urea adduct method was used to concentrate GLA from crude extract. As a result, after 5 sequential concentration procedures, GLA was concentrated 5-fold with a yield of 49%.  相似文献   

17.
Angiogenesis, the formation of new blood vessels, is an essential feature of malignant tumour development. Gamma linolenic acid (GLA), a n-6 polyunsaturated fatty acid (PUFA), inhibits the growth and metastasis of a variety of tumour cells, including breast, prostate, pancreatic cancer and hepatoma cells and also has anti-metastatic effects on endothelial cells. In the current study, we tested whether GLA inhibited angiogenesis induced by tumour cells. A rat aortic ring assay and in vitro tube formation of human vascular endothelial cells were used to determine angiogenesis (spontaneous, angiogenic factor- and tumour cells-induced). Inclusion of GLA in this 3-D matrix culture system significantly inhibited angiogenesis from aortic rings in a concentration-dependent manner. The results from tube formation of vascular endothelial cell further confirmed that GLA suppressed angiogenesis. Furthermore, in the cell motility assay (phagokinetic assay and endothelial wounding assay), a significant reduction of the motility of vascular endothelial cells by GLA was seen. It is concluded that gamma linolenic acid inhibits angiogenic factor and tumour-induced angiogenesis in vitro at least in part via its inhibitory effect on the motility of vascular endothelial cells.  相似文献   

18.
The pharmaceutical interest and limited availability of γ-linolenic acid (GLA) and eicosapentaenoic acid (EPA) prompted the search for genetic means for increasing the production of these fatty acids from algal sources. Cell lines of Spirulina platensis and Porphyridium cruentum resistant to the growth inhibition of the herbicide Sandoz 9785 were selected by serial transfers of the culture in the presence of increasing concentrations of the herbicide. The resistant cell lines of S. platensis overproduced GLA and those of P. cruentum overproduced EPA and were stable for at least 50 generations in the absence of the inhibitor.  相似文献   

19.
Gamma linolenic acid (GLA) is a polyunsaturated fatty acid, which induces cytotoxicity and regulates cell adhesion in cancer cells. The molecular mechanism of these actions is not clear. We have shown that GLA acts via peroxisome proliferator activated receptors (PPARs), by stimulating their phosphorylation and translocation to the nucleus. Removing PPAR gamma with antisense oligos abolished the effect of GLA on the expression of adhesion molecules and tumour suppressor genes, whereas removal of PPAR alpha had no effect. Tissues from patients with breast cancer showed a reduction of expression of both PPARs in cancer tissues, as compared with normal. Thus, PPAR gamma serves as the receptor for GLA in the regulation of gene expression in breast cancer cells.  相似文献   

20.
The constitutive and gamma -linolenic acid (GLA)-induced expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) immunoreactive protein in a panel of human malignant brain (U87MG, T98G); breast (MCF-7, MB MDA-231, MB MDA 435) and prostate (ALVA, DU-145, LNCaP, PC3) cell lines have been compared with those for their normal cell counterparts, the human normal astrocyte (NHA), mammary epithelial (HMEC) and prostate epithelial (PrEC) cells, respectively. Constitutive levels of expression for PPAR gamma protein were significantly higher in the malignant cell lines relative to their normal cells. GLA supplementation did not affect the protein expression in malignant cells but caused 6- and 3-fold increases in normal breast and prostate cells, respectively. Since activation of PPAR gamma protein in some human malignant cell lines has been demonstrated to induce tumour cell death, these findings signal the need to exploit the significantly elevated expression of this protein in the therapy of human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号