首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robertsonian translocations (ROBs) involving chromosome 21 are found in approximately 5% of patients with Down syndrome (DS). The most common nonhomologous ROB in DS is rob(14q21q). Aberrant recombination is associated with nondisjunction (NDJ) leading to trisomy 21. Haplotype analysis of 23 patients with DS and de novo rob(14q21q) showed that all translocations and all nondisjoined chromosomes 21 were maternally derived. Meiosis II NDJ occurred in 21 of 23 families. For these, a ROB DS chromosome 21 genetic map was constructed and compared to a normal female map and a published trisomy 21 map derived from meiosis II NDJ. The location of exchanges differed significantly from both maps, with a significant shift to a more distal interval in the ROB DS map. The shift may perturb segregation, leading to the meiosis II NDJ in this study, and is further evidence for crossover interference. More importantly, because the event in the short arms that forms the de novo ROB influences the placement of chiasmata in the long arm, it is most likely that the translocation formation occurs through a recombination pathway in meiosis. Additionally, we have demonstrated that events that occur in meiosis I can influence events, such as chromatid segregation in meiosis II, many decades later.  相似文献   

2.
Summary The largest class of de novo chromosomal rearrangements in Down syndrome are rea(21q21q). Classically, these rearrangements have been termed Robertsonian translocations, implying an attachment of two different chromosome 21 homologues. Additionally, a Robertsonian translocation between two chromosomes 21 cannot be distinguished from an isochromosome composed of genetically identical arms by cytogenetic analyses. Therefore, we have used molecular techniques to differentiate between true Robertsonian translocations and isochromosomes. Samples were obtained from 12 probands, ascertained for de novo rearrangements between homologous chromosomes 21 [11 rea(21q21q) and 1 rea (21;21)(q22;q22)], their parents (n = 24) and available siblings (n = 7). The parental origins of the de novo rearrangements were assigned using molecular and cytogenetic analyses. Although not statistically significant, there was a two-fold increase in the number of paternally derived de novo rearrangements (n = 8) as compared with maternally derived rearrangements (n = 4). To distinguish between rob(21q21q) and i(21q), we used restriction fragment length polymorphisms (RFLPs) spanning the length of chromosome 21. Using all informative and partially informative RFLPs, we used the method of maximum likelihood to assign the most likely rearrangement definition (i or rob) and parental origin in each family. The maximum likelihood estimates indicated that all rearrangements tested (n = 8) were isochromosomes. C-banding revealed two centromeres in three cases indicating that a U-type exchange occurred between sister chromatids in these rearrangements. Our results suggest that the majority of de novo rea(21q21q) are isochromosomes derived from a single parental chromosome 21.  相似文献   

3.
We have characterized 17 rob(13q14q) Robertsonian translocations, using six molecular probes that hybridize to the repetitive sequences of the centromeric and shortarm regions of the five acrocentric chromosomes by FISH. The rearrangements include six de novo rearrangements and the chromosomally normal parents, five maternally and three paternally inherited translocations, and three translocations of unknown origin. The D21Z1/D13Z1 and D14Z1/D22Z1 centromeric alpha-satellite DNA probes showed all rob(13q14q) chromosomes to be dicentric. The rDNA probes did not show hybridization on any of the 17 cases studied. The pTRS-47 satellite III DNA probe specific for chromosomes 14 and 22 was retained around the breakpoints in all cases. However, the pTRS-63 satellite III DNA probe specific for chromosome 14 did not show any signals on the translocation chromosomes examined. In 16 of 17 translocations studied, strong hybridization signals on the translocations were detected with the pTRI-6 satellite I DNA probe specific for chromosome 13. All parents of the six de novo rob(13q14q), including one whose pTRI-6 sequence was lost, showed strong positive hybridization signals on each pair of chromosomes 14 and 13, with pTRS-47, pTRS-63, and pTRI-6. Therefore, the translocation breakpoints in the majority of rob(13q14q) are between the pTRS-47 and pTRS-63 sequences in the p11 region of chromosome 14 and between the pTRI-6 and rDNA sequences within the p11 region of chromosome 13.  相似文献   

4.
Complex Chromosomal Rearrangements (CCRs) are constitutional structural rearrangements involving three or more chromosomes or having more than two breakpoints. CCRs preferentially occur during spermatogenesis and are transmitted in families through oogenesis. Recent investigation showed that CCRs are more complex and more common than initially appreciated. Here 1 present an overview of CCRs, including the important impact of CCRs in fertility, the mechanism of their development, the various meiotic errors that can occur and their consequences. The review also discusses the differential transmission of CCRs in males and females, the incidence of pregnancy outcomes of CCR carriers, genetic counseling and prenatal diagnosis.  相似文献   

5.
Structural chromosomal rearrangements occur commonly in the general population. Individuals that carry a balanced translocation are at risk of having unbalanced offspring; therefore, the frequency of translocations in couples with recurrent spontaneous abortions is higher than that in the general population. The constitutional t(11;22) translocation is the most common recurrent non-Robertsonian translocation in humans and may serve as a model to determine the mechanism that causes recurrent meiotic translocations. We previously localized the t(11;22) translocation breakpoint to a region on 22q11 within a low-copy repeat, termed "LCR22." To define the breakpoint on 11q23 and to ascertain whether this region shares homology with LCR22 sequences, we performed haplotype analysis on patients with der(22) syndrome. We found that the breakpoint on 11q23 occurred between two genetic markers, D11S1340 and APOC3-tetra, both being present within a single bacterial-artificial-chromosome clone. To determine whether the breakpoint occurred within the same region among a larger set of carriers, we performed FISH mapping studies. The breakpoints were all within the same clone, suggesting that this region may harbor sequences that are prone to breakage. We narrowed the breakpoint interval, in both derivative chromosomes from two unrelated carriers, to a 190-bp, AT-rich repeat, which indicates that this repeat may mediate recombination events on chromosome 11. Interestingly, the LCR22s harbor AT-rich repeats, suggesting that this sequence motif may mediate recombination events in nonhomologous chromosomes during meiosis.  相似文献   

6.
Molecular characterization of de novo secondary trisomy 13.   总被引:12,自引:6,他引:6       下载免费PDF全文
Unbalanced Robertsonian translocations are a significant cause of mental retardation and fetal wastage. The majority of homologous rearrangements of chromosome 21 in Down syndrome have been shown to be isochromosomes. Aside from chromosome 21, very little is known about other acrocentric homologous rearrangements. In this study, four cases of de novo secondary trisomy 13 are presented. FISH using alpha-satellite sequences, rDNA, and a pTRI-6 satellite I sequence specific to the short arm of chromosome 13 showed all four rearrangements to be dicentric and apparently devoid of ribosomal genes. Three of four rearrangements retained the pTRI-6 satellite I sequence. Case 1 was the exception, showing a deletion of this sequence in the rearrangement, although both parental chromosomes 13 had strong positive hybridization signals. Eleven microsatellite markers from chromosome 13 were also used to characterize the rearrangements. Of the four possible outcomes, one maternal Robertsonian translocation, two paternal isochromosomes, and one maternal isochromosome were observed. A double recombination was observed in the maternally derived rob(13q13q). No recombination events were detected in any isochromosome. The parental origins and molecular chromosomal structure of these cases are compared with previous studies of de novo acrocentric rearrangements.  相似文献   

7.
Robertsonian translocations (ROBs) have an estimated incidence rate of 1/1000 births, making this type of rearrangement the most common structural chromosomal abnormalities seen in the general population. In this study, we reports 872 cases of ROBs from 205,001 specimens karyotyped postnatally in a single accredited laboratory in China, including 583 balanced ROBs, 264 unbalanced ROBs, 9 mosaic ROBs, and 18 complex ROBs. Ninety-three percent of the balanced ROBs observed were adults with infertility, miscarriage, or offspring(s) with known chromosomal abnormalities. Significant excess of females were found to be carriers of balanced ROBs with an adjusted male/female ratio of 0.77. Ninety-eight percent of the unbalanced ROBs observed were children with variable referral reasons. Almost all of the unbalanced ROBs involved chromosome 21 except a single ROB with [46,XX,der(13;14),+13] identified in a newborn girl with multiple congenital anomalies. Multiple novel ROB karyotypes were reported in this report. This study represents the largest collections of ROBs in Chinese population.  相似文献   

8.
Monosomy 1p36 results from a variety of chromosome rearrangements, including terminal deletions, interstitial deletions, derivative chromosomes, and complex rearrangements. Our previous molecular studies on a large cohort of monosomy 1p36 subjects suggest that a significant percentage of terminal deletions of 1p36 are stabilized by the acquisition of telomeric sequences from other chromosome ends, forming derivative chromosomes (i.e., telomere capture). However, the molecular mechanism(s) that results in and/or stabilizes terminal deletions of 1p36 by telomere capture is poorly understood. In this report, we have mapped the translocation breakpoints in three subjects with der(1)t(1;1)(p36;q44) chromosomes by fluorescence in situ hybridization (FISH). These results indicate that the breakpoint locations are variable in all three subjects, with no common 1p deletion or 1q translocation breakpoints. In addition, sequence analysis of the 1p and 1q breakpoint-containing clones did not identify homologous sequences or low-copy repeats in the breakpoint regions, suggesting that nonallelic homologous recombination did not play a role in mediating these rearrangements. Microsatellite marker analysis indicates that two of the three derivative chromosomes were formed by intra-chromosomal rearrangements. These data are consistent with a number of recent reports in other model organisms that suggest break-induced replication at the site of a double-strand break may act as a mechanism of telomere capture by generating nonreciprocal translocations from terminally deleted chromosomes. Alternative models are also discussed.  相似文献   

9.
Robertsonian translocations (ROBs) are rearrangements of the acrocentric chromosomes 13-15 and 21-22. Cytologically, ROBs between homologous chromosomes cannot be distinguished from isochromosomes that originate through duplication of a single homologue. Both types of rearrangements can be involved in aneuploidy. A conceptus with a trisomy or a monosomy can be rescued, and in a proportion of cases, a uniparental disomy (UPD) would result. If there are regions of genome imprinting on a uniparental chromosome pair, phenotypic consequences can result. Chromosomes 14 and 15 are imprinted, and UPD of these are known to result in abnormalities. Thus, prenatal testing should be considered in all pregnancies when one of the parents is a balanced carrier of a ROB because of the risk for aneuploidy, and UPD testing should be considered in fetuses found to carry a balanced ROB or isochromosome that involves chromosomes 14 or 15. Additionally, infants or children with congenital anomalies who carry a ROB should also be considered for UPD testing.  相似文献   

10.
Telomeric fusion in pre-T-cell acute lymphoblastic leukemia   总被引:1,自引:1,他引:0  
Summary Telomeric fusion, a rare phenomenon, was observed in malignant cells from the peripheral blood of an 18-year-old male with rapidly progressive pre-T-cell acute lymphoblastic leukemia (ALL). Only two comparable cases, both with B-cell ALL, have been reported with telomeric fusion in neoplasia. All of the leukemic cells examined from our patient had two chromosome abnormalities consisting of partial triplication (trp) of chromosome 2 and a derivative chromosome 3. Approximately a third of the leukemic cells showed in addition telomere-telomere fusions. These involved the telomeric regions of 1p, 2p, 4q, 5q, 7q, 10q, 11q, 12p, 15p, 21p, and Xq and 3p of the derivative (3). The findings in this case suggest that telomeric fusion may function as a mechanism for the development of chromosome rearrangements that may play a role, albeit rarely, in human neoplasia.  相似文献   

11.
Chromosomal rearrangements occur as a consequence of the erroneous repair of DNA double-stranded breaks, and often underlie disease. The recurrent detection of specific tumorigenic rearrangements suggests that there is a mechanism behind chromosomal partner selection involving the shape of the genome. With the advent of novel high-throughput approaches, detailed genome integrity and folding maps are becoming available. Integrating these data with knowledge of experimentally induced DNA recombination strongly suggests that partner choice in chromosomal rearrangement primarily follows the three-dimensional conformation of the genome. Local rearrangements are favored over distal and interchromosomal rearrangements. This is seen for neutral rearrangements, but not necessarily for rearrangements that drive oncogenesis. The recurrent detection of tumorigenic rearrangements probably reflects their exceptional capacity to confer growth advantage to the rare cells that contain them. The abundant presence of neutral rearrangements suggests that somatic genome variation is also common in healthy tissue.  相似文献   

12.
Reported cases with a structurally abnormal X chromosome were compiled. These included 17 balanced and 26 unbalanced X-autosome translocations, each with inactivation of either a derivative X or a derivative of any of the autosomes. A further 52 cases with various structural rearrangements were studied. The shortest late-replicating segment in each arm pter leads to p21 and q13 leads to qter. In both cases, they were detected in all or most metaphases, thus making the results convincing. In one case, the distal part of Xq, q25 or 26 leads to qter was probably inactivated in a small proportion of the cells. It appears reasonable to assume that the former two segments and probably also the third include an "inactivation center(s)." In a male with a 46,Y,dup(X)(q13q22), no part of dup X replicated late although it contained extra chromosome material.  相似文献   

13.

Background

Neuroblastoma is a very heterogeneous pediatric tumor of the sympathetic nervous system showing clinically significant patterns of genetic alterations. Favorable tumors usually have near-triploid karyotypes with few structural rearrangements. Aggressive stage 4 tumors often have near-diploid or near-tetraploid karyotypes and structural rearrangements. Whole genome approaches for analysis of genome-wide copy number have been used to analyze chromosomal abnormalities in tumor samples. We have used array-based copy number analysis using oligonucleotide single nucleotide polymorphisms (SNP) arrays to analyze the chromosomal structure of a large number of neuroblastoma tumors of different clinical and biological subsets.

Results

Ninety-two neuroblastoma tumors were analyzed with 50 K and/or 250 K SNP arrays from Affymetrix, using CNAG3.0 software. Thirty percent of the tumors harbored 1p deletion, 22% deletion of 11q, 26% had MYCN amplification and 45% 17q gain. Most of the tumors with 1p deletion were found among those with MYCN amplification. Loss of 11q was most commonly seen in tumors without MYCN amplification. In the case of MYCN amplification, two types were identified. One type displayed simple continuous amplicons; the other type harbored more complex rearrangements. MYCN was the only common gene in all cases with amplification. Complex amplification on chromosome 12 was detected in two tumors and three different overlapping regions of amplification were identified. Two regions with homozygous deletions, four cases with CDKN2A deletions in 9p and one case with deletion on 3p (the gene RBMS3) were also detected in the tumors.

Conclusion

SNP arrays provide useful tools for high-resolution characterization of significant chromosomal rearrangements in neuroblastoma tumors. The mapping arrays from Affymetrix provide both copy number and allele-specific information at a resolution of 10–12 kb. Chromosome 9p, especially the gene CDKN2A, is subject to homozygous (four cases) and heterozygous deletions (five cases) in neuroblastoma tumors.
  相似文献   

14.

Background

The BLM DNA helicase plays a vital role in maintaining genome stability. Mutations in BLM cause Bloom syndrome, a rare disorder associated with cancer predisposition and premature aging. Humans and mice with blm mutations have increased frequencies of spontaneous mutagenesis, but the molecular basis of this increase is not well understood. In addition, the effect of aging on spontaneous mutagenesis in blm mutants has not been characterized. To address this, we used a lacZ reporter system in wild-type and several mutant strains of Drosophila melanogaster to analyze mechanisms of mutagenesis throughout their lifespan.

Results

Our data show that Drosophila lacking BLM have an elevated frequency of spontaneous genome rearrangements that increases with age. Although in normal flies most genome rearrangements occur through DNA ligase 4-dependent classical end joining, most rearrangements that accumulate during aging in blm mutants do not require DNA ligase 4, suggesting the influence of an alternative end-joining mechanism. Adult blm mutants also display reduced lifespan and ligase 4-independent enhanced tumorigenesis in mitotically active tissues.

Conclusions

These results suggest that Drosophila BLM suppresses error-prone alternative end-joining repair of DNA double-strand breaks that can result in genome instability and tumor formation during aging. In addition, since loss of BLM significantly affects lifespan and tumorigenesis, the data provide a link between error-prone end joining, genome rearrangements, and tumor formation in a model metazoan.  相似文献   

15.
Hereditary neuropathy with liability to pressure palsies (HNPP) and Smith–Magenis syndrome (SMS) are genomic disorders associated with deletion copy number variants involving chromosome 17p12 and 17p11.2, respectively. Nonallelic homologous recombination (NAHR)-mediated recurrent deletions are responsible for the majority of HNPP and SMS cases; the rearrangement products encompass the key dosage-sensitive genes PMP22 and RAI1, respectively, and result in haploinsufficiency for these genes. Less frequently, nonrecurrent genomic rearrangements occur at this locus. Contiguous gene duplications encompassing both PMP22 and RAI1, i.e., PMP22-RAI1 duplications, have been investigated, and replication-based mechanisms rather than NAHR have been proposed for these rearrangements. In the current study, we report molecular and clinical characterizations of six subjects with the reciprocal phenomenon of deletions spanning both genes, i.e., PMP22-RAI1 deletions. Molecular studies utilizing high-resolution array comparative genomic hybridization and breakpoint junction sequencing identified mutational signatures that were suggestive of replication-based mechanisms. Systematic clinical studies revealed features consistent with SMS, including features of intellectual disability, speech and gross motor delays, behavioral problems and ocular abnormalities. Five out of six subjects presented clinical signs and/or objective electrophysiologic studies of peripheral neuropathy. Clinical profiling may improve the clinical management of this unique group of subjects, as the peripheral neuropathy can be more severe or of earlier onset as compared to SMS patients having the common recurrent deletion. Moreover, the current study, in combination with the previous report of PMP22-RAI1 duplications, contributes to the understanding of rare complex phenotypes involving multiple dosage-sensitive genes from a genetic mechanistic standpoint.  相似文献   

16.
This is a unique case of intrachromosomal triplication of the X chromosome q arm detected with cytogenetic and spectral karyotyping in a 21-year-old woman with primary amenorrhea, who had been referred because of primary hypergonadotropic hypogonadism and Mullerian hypoplasia. Intrachromosomal triplications are rare rearrangements resulting in partial tetrasomy. Since 1993, at least 34 cases of intrachromosomal triplications involving 9 different chromosomes have been reported. The vast majority of the reported triplications are on the 15th chromosome, arised de novo and had middle inverted repetitions. In this report the genotype-fenotype correlation in a case of primary amenorrhea associated with triplication of the X chromosome q arm and the possible mechanisms of this rearrangement are discussed. Further the clinical usability of SKY analysis as a molecular cytogenetic tool in searching for genomic instability arising from cytogenetic rearrangements is highlighted.  相似文献   

17.
18.
A couple presenting with habitual spontaneous abortion both showed a chromosome rearrangement. The male had an apparently balanced paracentric inversion of chromosome 14 - 46,XY,inv(14) (q11q32). The female had a karyotype with a rare large short arm variant of chromosome 9 - 46,XX,var(9) (p11p21). Testing of a living normal child showed that he had inherited both rearrangements. Family testing showed the chromosome 9 variant in three generations, with all carriers being of normal phenotype and intelligence. This study confirms that the presence of more than one chromosomal rearrangement can be compatible with normal development. This is useful for genetic counselling. Nevertheless when such cases arise, each must be individually assessed.  相似文献   

19.
20.
To provide basic information for orchid conservation, we surveyed the plant allozyme literature to summarize genetic diversity and structure data for (i) rare orchids native to the Korean Peninsula, and (ii) their congeners irrespective of being common and rare or Korean or not. A total of 68 taxa (32 taxa in Korea and 37 outside Korea; Goodyera repens being included in both datasets) were considered in this study. Overall, rare Korean orchid species had significantly lower levels of genetic diversity than their common congeners and common orchids in general at both population and species levels. However, mean values of G ST (or F ST) for rare and common orchids (Korean or not) did not differ significantly from each other. We found patterns of both low and high genetic diversity in rare Korean orchids. Many rare orchids harbored a complete lack of allozyme variation or extremely low within-population variation, perhaps due to rarity associated with random genetic drift and/or, for the case of warm-temperate orchids, to founder effects during post-glacial re-colonization. In contrast, high levels of genetic variation were found for a few orchids that have become recently rare (due to over-collection during the past several decades), probably because there have not been sufficient generations for the initial diversity to be substantially eroded. In addition, several orchids occurring in the main mountain system of the Korean Peninsula (the Baekdudaegan), that served as a glacial refugium, maintained moderate to high levels of within-population genetic diversity. Based on our genetic data, conservation priority should be given to rare orchid species. Particularly, urgent measures should be implemented on Jeju Island, a popular vacation spot, because it also a hotspot for threatened orchids with low levels of genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号