首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two N-acetylgalactosaminyltransferases, designated I and II, have been purified from the microsomal fraction of calf arterial tissue and separated on Bio-Gel A. N-Acetylgalactosaminyltransferase I was purified 450-fold. It requires Mn2+ for maximal activity and transfers N-acetylgalactosamine residues from UDP-[1-3H]GalNAc in beta-glycosidic configuration to the non-reducing terminus of the acceptor substrates GlcA(beta 1-3)Gal(beta 1-3)Gal, GlcA(beta 1-3)Gal(beta 1-4)Glc and GlcA(beta 1-3)Gal. Even-numbered chondroitin oligosaccharides serve as acceptors for N-acetylgalactosaminyltransferase II, which transfers N-acetylgalactosamine from UDP-[1-3H]GalNAc to the non-reducing glucuronic acid residues of oligosaccharide acceptor substrates. Maximum transfer rates were obtained with a decasaccharide derived from chondroitin. Longer or shorter-chain chondroitin oligosaccharides are less effective acceptor substrates. All reaction products formed by N-acetylgalactosaminyltransferases I and II are substrates of beta-N-acetylhexosaminidase, which splits off the transferred [1-3H]GalNAc completely. In the microsomal fraction N-acetylgalactosaminyltransferase II had a 300-fold higher specific activity than N-acetylgalactosaminyltransferase I. In contrast to enzyme I, enzyme II loses much of its activity during the purification procedure and undergoes rapid thermodenaturation. GlcA-Gal-Gal is a characteristic sequence of the carbohydrate-protein linkage region of proteochondrioitin sulfate. The acceptor capacity of this trisaccharide suggests that N-acetylgalactosaminyltransferase I is involved in the synthesis of the carbohydrate-protein linkage region. Since N-acetylgalactosaminyltransferase II is highly specific for chondroitin oligosaccharides, we conclude that it participates in chain elongation during chondroitin sulfate synthesis.  相似文献   

2.
Oversulfated chondroitin sulfate E (CS-E) derived from squid cartilage exhibits intriguing biological activities, which appear to reflect the biological activities of mammalian CS chains containing the so-called E disaccharide unit [GlcAbeta1-3GalNAc(4,6-O-disulfate)]. Previously, we isolated novel tetra- and hexasaccharides containing a rare GlcA(3-O-sulfate) at the nonreducing end after digestion of squid cartilage CS-E with testicular hyaluronidase. In this study, squid cartilage CS-E was extensively digested with chondroitinase AC-II, which yielded five highly sulfated novel tetrasaccharides and two odd-numbered oligosaccharides (tri- and pentasaccharides) containing D-Glc. Their structures were determined by fast atom bombardment mass spectrometry and (1)H NMR spectroscopy. The results revealed an internal GlcA(3-O-sulfate) residue for all the novel tetrasaccharide sequences, which rendered the oligosaccharides resistant to the enzyme. The results suggest that GlcA(3-O-sulfate) units are not clustered but rather interspersed in the CS-E polysaccahride chains, being preferentially located in the highly sulfated sequences. The predominant structure on the nearest nonreducing side of a GlcA(3-O-sulfate) residue was GalNAc(4-O-sulfate) (80%), whereas that on the reducing side was GalNAc(4,6-O-disulfate) (59%). The structural variety in the vicinity of the GlcA(3-O-sulfate) residue might represent the substrate specificity of the unidentified chondroitin GlcA 3-O-sulfotransferase. The results also revealed a trisaccharide and a pentasaccahride sequence, both of which contained a beta-d-Glc branch at the C6 position of the constituent GalNAc residue. Approximately 5 mol % of all disaccharide units were substituted by Glc in the CS-E preparation used.  相似文献   

3.
The D-glucuronosyl (GlcA)- and N-acetyl-D-galactosaminyl (GalNAc)-transferases involved in chondroitin sulphate biosynthesis were studied in a microsomal preparation from chick-embryo chondrocytes. Transfer of GlcA and GalNAc from their UDP derivatives to 3H-labelled oligosaccharides prepared from chondroitin sulphate and hyaluronic acid was assayed by h.p.l.c. of the reaction mixture. Conditions required for maximal activities of the two enzymes were remarkably similar. Activities were stimulated 3.5-6-fold by neutral detergents. Both enzymes were completely inhibited by EDTA and maximally stimulated by MnCl2 or CoCl2. MgCl2 neither stimulated nor inhibited. The GlcA transferase showed a sharp pH optimum between pH5 and 6, whereas the GalNAc transferase gave a broad optimum from pH 5 to 8. At pH 7 under optimal conditions, the GalNAc transferase gave a velocity that was twice that of the GlcA transferase. Oligosaccharides prepared from chondroitin 4-sulphate and hyaluronic acid were almost inactive as acceptors for both enzymes, whereas oligosaccharides from chondroitin 6-sulphate and chondroitin gave similar rates that were 70-80-fold higher than those observed with the endogenous acceptors. Oligosaccharide acceptors with degrees of polymerization of 6 or higher gave similar Km and Vmax. values, but the smaller oligosaccharides were less effective acceptors. These results are discussed in terms of the implications for regulation of the overall rates of the chain-elongation fractions in chondroitin sulphate synthesis in vivo.  相似文献   

4.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of N-acetylgalactosamine 4-sulfate in chondroitin sulfate and dermatan sulfate, was purified 19,600-fold to apparent homogeneity from the squid cartilage. SDS-polyacrylamide gel electrophoresis of the purified enzyme showed a broad protein band with a molecular mass of 63 kDa. The protein band coeluted with GalNAc4S-6ST activity from Toyopearl HW-55 around the position of 66 kDa, indicating that the active form of GalNAc4S-6ST may be a monomer. The purified enzyme transferred sulfate from PAPS to chondroitin sulfate A, chondroitin sulfate C, and dermatan sulfate. The transfer of sulfate to chondroitin sulfate A and dermatan sulfate occurred mainly at position 6 of the internal N-acetylgalactosamine 4-sulfate residues. Chondroitin sulfate E, keratan sulfate, heparan sulfate, and completely desulfated N-resulfated heparin were not efficient acceptors of the sulfotransferase. When a trisaccharide or a pentasaccharide having sulfate groups at position 4 of N-acetylgalactosamine was used as acceptor, efficient sulfation of position 6 at the nonreducing terminal N-acetylgalactosamine 4-sulfate residue was observed.  相似文献   

5.
A novel sulfotransferase activity was discovered in fetal bovine serum using pig skin dermatan sulfate as an acceptor and [35S]3'-phosphoadenosine 5'-phosphosulfate as a sulfate donor. The enzyme was separated from chondroitin:GalNAc 6-O-sulfotransferase by chromatographic techniques. Enzymatic analysis of the reaction products demonstrated that the enzyme transferred sulfate to the C6 position of the GalNAc residue in the sequence -iduronic acid alpha1-3GalNAc beta1-4iduronic acid-. Thus, the enzyme has been identified as a hitherto unreported dermatan sulfate:GalNAc 6-O-sulfotransferase. The finding is in sharp contrast to the current concept that in dermatan sulfate biosynthesis GalNAc 4-O-sulfation is a prerequisite for iduronic acid formation by C5 epimerase.  相似文献   

6.
Squid cartilage chondroitin sulfate E (CS-E) exhibits various biological activities, including anticoagulant activities, lymphoid regulatory activities, and neuroregulatory activities [Ueoka, C., Kaneda, N., Okazaki, I., Nadanaka, S., Muramatsu, T., and Sugahara, K. (2000) J. Biol. Chem. 275, 37407-37413]. These activities are expressed through molecular interactions with specific proteins, including heparin cofactor II, selectins, CD44, chemokines, and the heparin-binding growth factor midkine. Hence, the sugar sequence information is essential for a better understanding of the CS-E functions. Previously, several novel tetrasaccharides containing the unreported 3-O-sulfated glucuronic acid (GlcA) were isolated after digestion of squid cartilage CS-E with testicular hyaluronidase. In this study, hexasaccharides were isolated to obtain more detailed sequence information, especially around the GlcA(3-O-sulfate) residue, and were characterized by fast atom bombardment mass spectrometry and 500 or 600 MHz (1)H NMR spectroscopy. The findings demonstrate one tetrasulfated and five pentasulfated hexasaccharide sequences, five of them being novel. They were composed of three disaccharide building units of either A [GlcA(beta1-3)GalNAc(4-O-sulfate)], E [GlcA(beta1-3)GalNAc(4,6-O-disulfate)], K [GlcA(3-O-sulfate)(beta1-3)GalNAc(4-O-sulfate)], L [GlcA(3-O-sulfate)(beta1-3)GalNAc(6-O-sulfate)], or M [GlcA(3-O-sulfate)(beta1-3)GalNAc(4,6-O-disulfate)], forming E-A-A, M-A-A, K-L-A, E-E-A, K-K-A, and A-M-A hexasaccharide sequences. The K-L tetrasaccharide sequence is to date unreported. The isolated sequences appear to indicate the occurrence of an unreported GlcA 3-O-sulfotransferase specific for chondroitin sulfate. The obtained sequence information will be useful for investigating the structure-function relationship and biosynthesis of CS-E.  相似文献   

7.
We have identified a human chondroitin synthase from the HUGE (human unidentified gene-encoded large proteins) protein data base by screening with two keywords: "one transmembrane domain" and "galactosyltransferase family." The identified protein consists of 802 amino acids with a type II transmembrane protein topology. The protein showed weak homology to the beta1,3-galactosyltransferase family on the amino-terminal side and to the beta1,4-galactosyltransferase family on the carboxyl-terminal side. The expression of a soluble recombinant form of the protein in COS-1 cells produced an active enzyme, which transferred not only the glucuronic acid (GlcUA) from UDP-[(14)C]GlcUA but also N-acetylgalactosamine (GalNAc) from UDP-[(3)H]GalNAc to the polymer chondroitin. Identification of the reaction products demonstrated that the enzyme was chondroitin synthase, with both beta1,3-GlcUA transferase and beta1,4-GalNAc transferase activities. The coding region of the chondroitin synthase was divided into three discrete exons and localized to chromosome 15. Northern blot analysis revealed that the chondroitin synthase gene exhibited ubiquitous but markedly differential expression in the human tissues examined. Thus, we demonstrated that analogous to human heparan sulfate polymerases, the single polypeptide chondroitin synthase possesses two glycosyltransferase activities required for chain polymerization.  相似文献   

8.
We previously demonstrated a unique alpha-N-acetylgalactosaminyltransferase that transferred N-acetylgalactosamine (GalNAc) to the tetrasaccharide-serine, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser (GlcA represents glucuronic acid), derived from the common glycosaminoglycan-protein linkage region, through an alpha1,4-linkage. In this study, we purified the enzyme from the serum-free culture medium of a human sarcoma cell line. Peptide sequence analysis of the purified enzyme revealed 100% identity to the multiple exostoses-like gene EXTL2/EXTR2, a member of the hereditary multiple exostoses (EXT) gene family of tumor suppressors. The expression of a soluble recombinant form of the protein produced an active enzyme, which transferred alpha-GalNAc from UDP-[3H]GalNAc to various acceptor substrates including GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser. Interestingly, the enzyme also catalyzed the transfer of N-acetylglucosamine (GlcNAc) from UDP-[3H]GlcNAc to GlcAbeta1-3Galbeta1-O-naphthalenemethanol, which was the acceptor substrate for the previously described GlcNAc transferase I involved in the biosynthetic initiation of heparan sulfate. The GlcNAc transferase reaction product was sensitive to the action of heparitinase I, establishing the identity of the enzyme to be alpha1, 4-GlcNAc transferase. These results altogether indicate that EXTL2/EXTR2 encodes the alpha1,4-N-acetylhexosaminyltransferase that transfers GalNAc/GlcNAc to the tetrasaccharide representing the common glycosaminoglycan-protein linkage region and that is most likely the critical enzyme that determines and initiates the heparin/heparan sulfate synthesis, separating it from the chondroitin sulfate/dermatan sulfate synthesis.  相似文献   

9.
Urine from Sd(a+) individuals was found to contain a beta-N-acetylgalactosaminyltransferase that transfers N-acetylgalactosamine (GalNAc) from UDP-GalNAc to 3'-sialyllactose and glycoproteins carrying the terminal NeuAc alpha-3Gal beta group. This enzyme has been purified 174-fold by affinity chromatography on Blue Sepharose and DEAE-Sephacel chromatography in a yield of 33%. Neither endogenous incorporation nor sugar nucleotide degrading enzymes were found in the purified preparation. The transferase had a pH optimum of pH 7.5 and a requirement for Mn2+ but not for detergents. The Km for UDP-GalNAc was 66 X 10(-6) M, using fetuin as an acceptor. Like beta-GalNAc-transferase from other sources the urinary enzyme had a strict requirement for sialylated acceptors. On the basis of enzymatic and chemical treatment of the product obtained by the transfer of [3H]GalNAc to 3'-sialyllactose, we propose that the enzyme attaches GalNAc in beta-anomeric configuration to O-4 of the galactose residue that is substituted at O-3 by sialic acid. A preparation of Tamm-Horsfall glycoprotein from a Sd(a-) donor lacking beta-GalNAc was found to be the best acceptor among the glycoproteins tested. Studies on the transferase activity toward fetuin, human chorionic gonadotropin, and glycophorin A indicated that the enzyme preferentially adds the sugar to the sialylated terminal end of N-linked oligosaccharides. Unlike the beta-GalNAc-transferase bound to human kidney microsomes (F. Piller et al. (1986) Carbohydr. Res. 149, 171-184) the urinary transferase is able to transfer beta-GalNAc to the NeuAc alpha-3Gal beta-3(NeuAc alpha-6)GalNAc chains bound to the native glycophorin.  相似文献   

10.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of N-acetylgalactosamine 4-sulfate (GalNAc(4SO(4))) in chondroitin sulfate and dermatan sulfate. We have previously purified the enzyme to apparent homogeneity from the squid cartilage. We report here cloning and characterization of human GalNAc4S-6ST. The strategy for identification of human GalNAc4S-6ST consisted of: 1) determination of the amino acid sequences of peptides derived from the purified squid GalNAc4S-6ST, 2) amplification of squid DNA by polymerase chain reaction, and 3) homology search using the amino acid sequence deduced from the squid DNA. The human GalNAc4S-6ST cDNA contains a single open reading frame that predicts a type II transmembrane protein composed of 561 amino acid residues. The recombinant protein expressed from the human GalNAc4S-6ST cDNA transferred sulfate from 3'-phosphoadenosine 5'-phosphosulfate to position 6 of the nonreducing terminal and internal GalNAc(4SO(4)) residues contained in chondroitin sulfate A and dermatan sulfate. When a trisaccharide and a pentasaccharide having sulfate groups at position 4 of N-acetylgalactosamine residues were used as acceptors, only nonreducing terminal GalNAc(4SO(4)) residues were sulfated. The nucleotide sequence of the human GalNAc4S-6ST cDNA was nearly identical to the sequence of human B cell recombination activating gene-associated gene.  相似文献   

11.
The structure of the linkage region of chondroitin sulfate chains attached to the hybrid proteoglycans of the Engelbreth-Holm-Swarm mouse tumor was investigated. The peptidoglycan fraction which contains oversulfated chondroitin sulfate rich in the GlcA beta 1-3GalNAc-4,6-diO-sulfate unit and undersulfated heparan sulfate rich in GlcA beta 1-4GlcNAc and GlcA beta 1-4GlcN-2N-sulfate units was isolated after exhaustive protease digestion of the acetone powder of the tumor tissue, (GlcA, glucuronic acid; GalNAc, 2-deoxy-2-N-acetylamino-D-galactose). Glycosaminoglycans were released by beta-elimination using NaB3H4 and digested with chondroitinase ABC. The linkage region fraction was separated from heparan sulfate by gel filtration and fractionated by HPLC on an amine-bound silica column. Six radiolabeled compounds (L1-L6) were obtained and structurally analyzed by cochromatography with authentic hexasaccharide alditols recently isolated by us from the linkage region, and by digestion using chondroitinase ACII, alkaline phosphatase and beta-galactosidase in conjugation with HPLC. These compounds shared the conventional hexasaccharide backbone structure: delta GlcA beta 1-3GalNAc beta 1-4GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl-ol, (delta GlcA, delta 4.5-GlcA or D-gluco-4-enepyranosyluronic acid). L1 was not sulfated or phosphorylated. L2 and L4 were monosulfated at C-6 and C-4 of the GalNAc residue, respectively. Upon alkaline phosphatase digestion, L3, L5 and L6 were converted to L1, L2 and L4, respectively. Analysis of the periodate oxidation products indicated that the phosphate group in L3, L5 and L6 is located at C-2 of Xyl-ol. These results suggest that Xyl-2-O-phosphate is associated with both 4-O-sulfated and 6-O-sulfated GalNAc units and does not directly determine the sulfation pattern of chondroitin sulfate.  相似文献   

12.
Membranes from brefeldin A-treated and untreated chick embryo epiphyseal cartilage were fractionated separately by equilibrium sucrose density gradient centrifugation. Fractions were assayed for Gal I transferase, Gal II transferase, Gal ovalbumin transferase, chondroitin polymerization on endogenous acceptors, GalNAc transfer to exogenous chondroitin hexasaccharide, and sulfate transfer to exogenous chondroitin. Gal I transferase and Gal II transferase activities were found in heavier cis- and medial-Golgi fractions, but with distributions different from each other. Brefeldin A had no effect on either their distribution or their total activity. Gal ovalbumin transferase activity in fractions from untreated cartilage was found as a dual peak in medial- and trans-Golgi areas. The latter peak was diminished in the fractions from the brefeldin A-treated cartilage, whereas the former peak was correspondingly increased. A similar dual medial- and trans-Golgi distribution for chondroitin polymerization on endogenous acceptors was seen with fractions from untreated cartilage. This was modified in fractions from brefeldin A-treated cartilage with a complete loss of synthesis in the trans-Golgi peak and a slight increase in synthesis in the medial-Golgi peak. However, the distribution of GalNAc transferase activity using exogenous chondroitin hexasaccharide indicated that considerable chondroitin-synthesizing activity still remained in these trans-Golgi fractions. This demonstrated that brefeldin A had caused a block in movement of endogenous proteochondroitin acceptors to the trans-Golgi site of synthesis. Sulfotransferase activity was also found in a dual distribution similar to that of the chondroitin polymerization and GalNAc transferase, with a small reduction in activity in the trans-Golgi fractions of brefeldin A-treated cartilage. Thus, treatment of cartilage with brefeldin A resulted in the loss of considerable trans-Golgi chondroitin sulfate-synthesizing enzyme activity and a block in the transport of one form of proteochondroitin precursor to the trans-Golgi membranes.  相似文献   

13.
Chondroitin sulfates were fragmented using the enzymes chondroitin sulfate ABC endolyase and chondroitin ACII lyase; both disaccharide and tetrasaccharide fragments were isolated after reduction to the corresponding 2-deoxy-2-N-acetylamino-D-galactitol (GalNAc-ol) form. These have the structures: Delta UA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S-ol, Delta UA2S(beta 1--3)GalNAc6S-ol, Delta UA(beta 1--3)GalNAc4S(beta 1--4)L-IdoA(alpha 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc4S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc6S-ol, Delta UA2S(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol and Delta UA2S(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc6S-ol, where Delta UA represents a 4,5-unsaturated hexuronic acid (4-deoxy-alpha-Lthreo-hex-4-enepyranosyluronic acid) and 6S/4S/2S represent O-ester sulfate groups at C6/C4/C2 sites. Complete (1)H-NMR and (13)C-NMR data are derived for these species, which may help to alleviate some of the significant difficulties resulting from signal complexity that are currently hindering the characterization and assignment of major and minor structural components within chondroitin sulfate and dermatan sulfate polymers.  相似文献   

14.
The relationship between sulfation and polymerization in chondroitinsulfate (CS) biosynthesis has been poorly understood. In thisstudy, we investigated the specificity of bovine serum UDP-GalNAc:CS ß-GalNAc transferase responsible for chain elongationusing structurally defined acceptor substrates. They consistedof tetra- and hexasaccharide-serines that were chemically synthesizedand various regular oligosaccharides with a GlcA residue atthe nonreducing terminus, prepared from chondroitin and CS usingtesticular hyaluronidase. The enzyme preparation was obtainedfrom fetal bovine serum by means of heparin-Sepharose affinitychromatography. The preparation did not contain the  相似文献   

15.
PTP zeta is a receptor-type protein-tyrosine phosphatase that is synthesized as a chondroitin sulfate proteoglycan and uses pleiotrophin as a ligand. The chondroitin sulfate portion of this receptor is essential for high affinity binding to pleiotrophin. Here, we purified phosphacan, which corresponds to the extracellular domain of PTP zeta, from postnatal day 7 (P7) and P12 rat cerebral cortex (PG-P7 and PG-P12, respectively) and from P20 rat whole brain (PG-P20). The chondroitin sulfate of these preparations displayed immunologically and compositionally different structures. In particular, only PG-P20 reacted with the monoclonal antibody MO-225, which recognizes chondroitin sulfate containing the GlcA(2S)beta 1-3GalNAc(6S) disaccharide unit (D unit). Analysis of the chondroitinase digestion products revealed that GlcA beta 1-3GalNAc(4S) disaccharide unit (A unit) was the major component in these preparations and that PG-P20 contained 1.3% D unit, which was not detected in PG-P7 and PG-P12. Interaction analysis using a surface plasmon resonance biosensor indicated that PG-P20 had approximately 5-fold stronger affinity for pleiotrophin (dissociation constant (KD) = 0.14 nM) than PG-P7 and PG-P12, although all these preparations showed similar low affinity binding to pleiotrophin after chondroitinase ABC digestion (KD = 1.4 approximately 1.6 nM). We also found that shark cartilage chondroitin sulfate D containing approximately 20% D unit bound to pleiotrophin with moderate affinity (KD = 2.7 nM), whereas whale cartilage chondroitin sulfate A showed no binding to this growth factor. These results suggest that variation of chondroitin sulfate plays important roles in the regulation of signal transduction in the brain.  相似文献   

16.
From the carbohydrate-protein linkage region of whale cartilage proteoglycans, which bear predominantly chondroitin 4-sulfate, one nonsulfated, two monosulfated and one disulfated hexasaccharide alditols were isolated after exhaustive digestions with Actinase E and chondroitinase ABC, and subsequent beta-elimination. Their structures were analyzed by chondroitinase ACII digestion in conjunction with HPLC and by 500-MHz 1H-NMR spectroscopy. The nonsulfated compound (A) had the following conventional structure: delta GlcA(beta 1-3)-GalNAc(beta 1-4)GlcA(beta 1-3)Gal(beta 1-4)Xylol, where GlcA, delta GlcA and GalNAc are glucuronic acid; 4,5-unsaturated glucuronic acid and 2-deoxy-2-N-acetylamino-D-galactose, respectively. The other compounds were sulfated derivatives of compound A. Two monosulfated compounds (B and C) had an ester sulfate on C4 or C6 of the GalNAc residue, respectively and the disulfated compound (D) had two ester sulfate groups, namely, one on C4 of the GalNAc and the other on C4 of the Gal residue substituted by GlcA. The molar ratio of A/B/C/D was 0.21:0.16:0.36:0.27. The compound containing Gal-4-O-sulfate was previously isolated by us in the form of a sulfated glycoserine [delta GlcA(beta 1-3)GalNAc(4-O- sulfate)(beta 1-4)GlcA(beta 1-3)Gal(4-O-sulfate)(beta 1-3)-Gal(beta 1- 4)Xyl beta 1-O-Ser] from the carbohydrate-protein linkage region of rat chondrosarcoma chondroitin-4-sulfate proteoglycans [Sugahara K., Yamashina, I., DeWaard, P., Van Halbeek, H. & Vliegenthart, J.F.G. (1988) J. Biol. Chem. 263, 10,168-10,174]. The discovery of this structure in the carbohydrate-protein linkage region of chondroitin 4-sulfate proteoglycans from nontumorous cartilage indicates that it is not a tumor-associated product but rather a physiological biosynthetic product since it represents a significant proportion. The biological significance of this structure is discussed in relation to glycosaminoglycan biosynthesis.  相似文献   

17.
Yamaguchi T  Ohtake S  Kimata K  Habuchi O 《Glycobiology》2007,17(12):1365-1376
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate to position 6 of GalNAc(4SO(4)) residues in chondroitin sulfate (CS). We previously purified squid GalNAc4S-6ST and cloned a cDNA encoding the partial sequence of squid GalNAc4S-6ST. In this paper, we cloned squid GalNAc4S-6ST cDNA containing a full open reading frame and characterized the recombinant squid GalNAc4S-6ST. The cDNA predicts a Type II transmembrane protein composed of 425 amino acid residues. The recombinant squid GalNAc4S-6ST transferred sulfate preferentially to the internal GalNAc(4SO(4)) residues of chondroitin sulfate A (CS-A); nevertheless, the nonreducing terminal GalNAc(4SO(4)) could be sulfated efficiently when the GalNAc(4SO(4)) residue was included in the unique nonreducing terminal structure, GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), which was previously found in CS-A. Shark cartilage chondroitin sulfate C (CS-C) and chondroitin sulfate D (CS-D), poor acceptors for human GalNAc4S-6ST, served as the good acceptors for the recombinant squid GalNAc4S-6ST. Analysis of the sulfated products formed from CS-C and CS-D revealed that GalNAc(4SO(4)) residues included in a tetrasaccharide sequence, GlcA-GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), were sulfated efficiently by squid GalNAc4S-6ST, and the E-D hybrid tetrasaccharide sequence, GlcA-GalNAc(4,6-SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)) was generated in the resulting sulfated glycosaminoglycans. These observations indicate that the recombinant squid GalNAc4S-6ST is a useful enzyme for preparing a unique chondroitin sulfate containing the E-D hybrid tetrasaccharide structure.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号