首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stage-specific gene expression in erythroid progenitor cells (CFU-E)   总被引:1,自引:0,他引:1  
In erythropoietic differentiation, mature red blood cells are generated from specific progenitor cells through the action of specific growth regulatory molecules. To know the mechanism of differentiation, it is important to examine the control of gene expression in these progenitor cells in combination with growth regulatory molecules. We have cloned two genes expressing at a maximal level in the CFU-E (colony forming unit-erythroid), one of the erythroid progenitor cells from novel murine erythroleukemia (MEL) cell line (TSA8) which can be induced to CFU-E in vitro. The expression of these genes is well correlated with the appearance of CFU-E during induction of TSA8 cells, and is higher in the CFU-E-cells enriched from mouse fetal livers than in the more differentiated erythroid cells. Combining these with our previous results, it is suggested that in the erythropoiesis the progenitor cells have distinct patterns of gene expression. This expression is replaced through each progenitor cell rather than by the continuous increase in the expression of a set of genes specific to the mature erythroid cell following the commitment process.  相似文献   

2.
The effects of a variety of inhibitors of the arachidonic acid metabolic pathway have been tested on the growth of early erythroid progenitor cell-derived colonies (CFU-E and BFU-E) in an attempt to discern whether products of the cyclo-oxygenase pathway or lipoxygenase pathway are essential for erythropoiesis. Murine erythroid progenitor cells obtained from fetal livers were cultured in the presence of erythropoietin for CFU-E and of interleukin 3 for BFU-E colony formation in response to the cyclo-oxygenase inhibitors, aspirin or sodium meclofenamate, and the lipoxygenase inhibitors, BW755C, nordihydroguiaretic acid (NDGA), phenidone, and butylated hydroxyanisole (BHA). The most potent inhibitor of colony formation (both CFU-E and BFU-E) was the selective lipoxygenase inhibitor, BW755C, followed by NDGA, phenidone and BHA. Neither aspirin nor sodium meclofenamate (10(-4) - 10(-6)M) significantly (p less than 0.05) inhibited CFU-E or BFU-E formation. These results support the hypothesis that lipoxygenase products of arachidonic acid metabolism may be essential for erythroid cell proliferation/differentiation.  相似文献   

3.
The murine erythroleukemia (MEL) cell line, TSA8, becomes responsive to erythropoietin after induction with dimethyl sulfoxide (DMSO). We examined the signalling pathways involved in the commitment of TSA8 cells to become the erythroid progenitor cells responsive to erythropoietin, comparing them with the pathway used in an erythropoietin-induced change of the progenitor cells. Amiloride, an inhibitor of the Na+/H+ antiporter, completely blocked the commitment of TSA8 cells to become responsive to erythropoietin at a concentration that did not affect cell proliferation, while it showed no effect on the differentiation or proliferation of the erythroid progenitor cells derived from TSA8 cells by erythropoietin. Ethyleneglycol-bis (beta-aminoethyl ether) N,N,N',N'-tetra acetic acid (EGTA) inhibited the commitment of TSA8 cells to CFU-E-like cells without affecting colony formation. In contrast, EGTA did not inhibit erythropoietin-induced differentiation of the progenitor cells, but did inhibit their proliferation. These results indicate that erythropoietin uses different signalling pathways from those used in the induction of the commitment of TSA8 cells.  相似文献   

4.
Recent studies have shown that the T cell-derived cytokine, interleukin-17 (IL-17), stimulates hematopoiesis, specifically granulopoiesis inducing expansion of committed and immature progenitors in bone marrow. Our previous results pointed to its role in erythropoiesis too, demonstrating significant stimulation of BFU-E and suppression of CFU-E growth in the bone marrow from normal mice. As different sensitivities of erythroid and myeloid progenitor cells to nitric oxide (NO) were found, we considered the possibility that the observed effects of IL-17 were mediated by NO. The effects of recombinant mouse IL-17, NO donor (sodium nitroprusside - SNP) and two NO synthases inhibitors (L-NAME and aminoguanidine) on erythroid progenitor cells growth, as well as the ability of IL-17 to induce nitric oxide production in murine bone marrow cells, were examined. In addition, we tested whether the inhibition of CFU-E colony formation by IL-17 could be corrected by erythropoietin (Epo), the principal regulator of erythropoiesis. We demonstrated that IL-17 can stimulate low level production of NO in murine bone marrow cells. Exogenously added NO inhibited CFU-E colony formation, whereas both L-NAME and aminoguanidine reversed the CFU-E suppression by IL-17 in a dose-dependent manner. The inhibition of CFU-E by IL-17 was also corrected by exposure to higher levels of Epo. The data obtained demonstrated that at least some of the IL-17 effects in bone marrow related to the inhibition of CFU-E, were mediated by NO generation. The fact that Epo also overcomes the inhibitory effect of IL-17 on CFU-E suggests the need for further research on their mutual relationship and co-signalling.  相似文献   

5.
Combined action of c-kit and erythropoietin on erythroid progenitor cells.   总被引:1,自引:0,他引:1  
Mutations at the murine dominant-white spotting locus (W) (c-kit) affect various aspects of hematopoiesis. We have made antibodies against c-Kit with the synthetic peptides deduced from the murine c-kit gene and examined the role of c-Kit in erythropoiesis. The antibody inhibited the stromal cell-dependent large colony formation of the erythroid progenitors. In the culture of erythropoietin-responsive erythroid progenitors of the anemia-inducing Friend virus-infected mouse spleen, the antibody inhibited only proliferation, but not differentiation of the progenitor cells. The inhibition was effective only at the early phase (within 6 hours after erythropoietin addition) before the cells start to proliferate induced by erythropoietin. During the early phase, erythropoietin down-regulated c-kit gene expression. These results suggest a mechanism of combined action of c-Kit with erythropoietin on the lineage-restricted erythroid progenitor cells.  相似文献   

6.
Erythroid progenitor cells synthesize 12-hydroxyeicosatetraenoic acid (12-HETE) and 15-hydroxyeicosatetraenoic acid (15-HETE) when stimulated by erythropoietin (Ep). Maximal stimulation of 12-HETE production occurred at one hour, whereas 15-HETE activity remained constant in response to Ep for 24 hours. Lipoxygenase-selective inhibitors of arachidonic acid metabolism blocked HETE production and Ep-stimulated growth and differentiation of erythroid progenitor cell-derived colonies (CFU-E). On the other hand, specific inhibitors of cyclooxygenase (aspirin and meclofenamate) did not significantly inhibit Ep-induced erythroid colony formation. It is hypothesized that the stimulation of HETE production from arachidonic acid (AA) is an essential step in the mechanism of action of Ep.  相似文献   

7.
Anti-TU 67 is a murine monoclonal antibody that recognizes the transferrin receptor. With respect to hematopoietic cells TU 67 is expressed by human multipotent colony-forming cells (CFU-Mix), erythroid progenitor cells (BFU-E and CFU-E) and a fraction of granulocyte/monocyte colony forming cells, but is not expressed by mature hematopoietic cells including erythrocytes, platelets, lymphocytes, and peripheral blood myeloid cells. The TU 67-positive fraction of normal bone marrow, separated by fluorescence-activated cell sorting (FACS) or immune rosettes, contained 87% of the erythroid progenitor cells. Erythroid progenitor cells were enriched up to 50-fold by using a combination of monoclonal antibodies to deplete mature hematopoietic cells, followed by positive selection of BFU-E and CFU-E by TU 67 antibody.  相似文献   

8.
Using normal bone marrow as target cells, we assayed the colony-forming efficiency of early and late erythroid progenitor cells and granulocyte-macrophage progenitor cells using several different lots of fetal bovine serum (FBS). There was a marked difference in the ability of these sera to support colony formation, particularly in erythroid colony assays. When adsorbed by activated charcoal, all these sera supported erythroid colony formation more efficiently than before adsorption. There was no significant effect of charcoal adsorption of FBS on granulocyte-macrophage colony formation. Gel-filtration study showed that charcoal adsorption diminished low-molecular-weight fractions by less than 5000 Da. The inhibitory activity of this fraction was heat labile and Pronase sensitive. Concentrated samples obtained from these fractions inhibited erythroid colony formation in a dose-dependent manner. These results suggest that low-molecular-weight inhibitors that are relatively specific to erythropoiesis play a critical role in the lot differences of FBS for erythroid colony formation.  相似文献   

9.
10.
Transforming growth factor-beta (TGF beta) regulates cell growth and differentiation in numerous cell systems, including several hematopoietic lineages. We used in vitro cultures of highly enriched hematopoietic progenitor cells stimulated by natural and recombinant growth factors to investigate the biologic effects of TGF beta 1 and TGF beta 2 on erythroid (CFU-E and burst-forming unit (BFU)-E), granulocyte-macrophage (CFU-GM) and multilineage (i.e., granulocyte, erythroid, macrophage, and megakaryocyte; CFU-GEMM) colony-forming cells. In the absence of exogenous CSF, neither TGF beta 1 nor TGF beta 2 supported progenitor cell growth. In the presence of recombinant or natural CSF, picomolar concentrations of TGF beta 1 inhibited growth of CFU-E, BFU-E, and CFU-GEMM and enhanced growth of day 7 CFU-GM. Inhibition of CFU-E and BFU-E by human and porcine TGF beta 1 was similar, ranging from 17 to 73% over a concentration range of 0.05 to 1.0 ng/ml, and was largely independent of the type of burst-promoting activity used (rIL-3 vs cell line 5637-conditioned medium). Inhibition of CFU-GEMM ranged from 79 to 98% over a concentration range of 0.25 to 1.0 ng/ml. The inhibitory effect of TGF beta 1 was progressively lost when its addition was delayed for 40 to 120 h, suggesting a mode of action during early cell divisions. In contrast, growth of CFU-GM stimulated by plateau concentrations of human rG-CSF, rGM-CSF, and rIL-3 was enhanced up to 154 +/- 22% by human TGF beta 1. Porcine platelet-derived TGF beta 2 was essentially without effect on the progenitor populations examined. These results support the hypothesis that TGF beta may play role in the regulation of hematopoietic progenitor cell proliferation by differentially affecting individual lineages and is apparently capable of doing so in the relative absence of marrow accessory cells.  相似文献   

11.
Using long-term culture techniques, it has been shown that stromal cells in the marrow microenvironment are essential for the continued production and self-renewal of hematopoietic stem cells. We previously reported the development of a methylcellulose colony assay for a population of marrow stromal progenitors called CFU-RF. In this paper, a method is described for subculturing cells from individual CFU-RF-derived colonies to allow conditioned medium production (StCM). StCM, prepared in this way, was found to possess an erythroid lineage-specific activity that stimulated the formation of macroscopic erythroid colonies in cultures containing erythropoietin (epo). Using dose-response curves, the KG1 colony assay, and antibody neutralization, it was shown that the activity could not be attributed to interleukin 3 (IL3) or granulocyte-macrophage colony-stimulating factor (GM-CSF). However, it was further shown that a monolayer of stromal cells, which had earlier been producing the erythroid activity, could be stimulated by IL1 to produce granulocytic colony-stimulating activity, but only as long as IL1 was present in the culture medium. These findings indicate a mechanism whereby the same stromal population could be modulated to promote growth and differentiation of different hematopoietic lineages.  相似文献   

12.
The commitment of novel mouse erythroleukemic (MEL) cells (TSA8) to colony-forming units of erythroid (CFU-E) by dimethylsulfoxide (DMSO) was investigated. After exposure to the inducer in liquid culture, the cells were transferred to a semi-solid culture to examine their ability to form erythroid colonies which were dependent on erythropoietin. Exposure to DMSO for 2 days is optimum for CFU-E type colony formation and colonies induced in this manner are equivalent to CFU-E. The induction occurred in a synchronous manner. Partly stained colonies appeared prior to CFU-E formation and are thought to be a result of asymmetric cell division. Appearance of these partly stained colonies suggested that the number of erythropoietin receptors is important in the complete responsiveness to erythropoietin. TSA8 cells constitute a suitable model system in which to analyse the mechanism of commitment in early erythropoiesis.  相似文献   

13.
Infection of BALB/c mice with Rauscher leukemia virus (RLV) gives rise to pronounced erythrocytopoiesis manifesting in splenomegaly and is associated with progressive development of anemia. In the spleen erythroid colony forming units (CFU-E) increase exponentially up to 800-fold that of normal levels by the third week of infection. In vitro these CFU-E are dependent on erythropoietin for colony formation, their erythropoietin requirements being higher than that of CFU-E from normal mice. Numbers of CFU-E in spleen and degree of splenomegaly in anemic RLV infected mice were also shown to be modified by red blood cell transfusion, but progression of the disease was not stopped. Erythroid burst forming units (BFU-E) were also responsive to erythropoietin. However, a small proportion of cells also formed BFU-E colonies at concentrations which did not support growth of normal marrow BFU-E. When compared to normal, CFU-E found in RLV-infected spleen have similar velocity sedimentation rates. However, buoyant density separation of leukemic spleen cells indicated that CFU-E were more homogeneous (modal density 1.0695 g/cm3) than CFU-E from normal spleen. Analysis of physical properties of CFU-E and the nonhemoglobinized erythroblast-like cells, which accumulate in the spleen showed that they differed mainly in their distribution of cell diameter. Our findings show that erythroid progenitor cells in RLV infected mice are responsive to erythropoietin in vitro. Also in vivo erythropoiesis appears to be under control of erythropoietin but other factors which lead to progression of RLV disease apparently exist. Most proerythroblast-like cells, which are characteristic of this disease, apparently lack the potential to form colonies and may be more mature than CFU-E.  相似文献   

14.
Induction of circulating neonatal stem cell populations   总被引:2,自引:0,他引:2  
N Dainiak  M Sanders  S Sorba 《Blood cells》1991,17(2):339-343
Hematopoietic cell differentiation and growth are regulated by paracrine molecules that include insulin and insulin-like growth factors (IGFs). IGF-I and -II stimulation of erythropoiesis in cultures of adult bone marrow and peripheral blood cells and murine fetal liver cells has been previously reported. In order to investigate whether these paracrines also influence differentiation and proliferation of human neonatal progenitor cells, we assessed their effects in cultures of umbilical cord blood and adult blood and marrow cells, using a serum-substituted system. IGF-I stimulated colony-forming unit-erythroid (CFU-E)-derived colony formation by adult cells by up to 265%, while IGF-II augmented colony formation by up to 100% in the presence of erythropoietin. Stimulation occurred in a saturable fashion over concentrations of 0 to 200 ng/ml. Similar results were obtained in subcultures of adult-circulating progenitors. Moreover, a subpopulation of erythropoietin-independent adult CFU-E was stimulated to proliferate by IGF-I but not by IGF-II. In contrast to these effects in adult marrow culture, IGF-II exerted a greater stimulatory effect on neonatal CFU-E proliferation than did IGF-I in erythropoietin-containing cultures. Additionally, IGF-II stimulated proliferation of erythropoietin-independent neonatal CFU-Es in a concentration-dependent fashion. Together, the data are consistent with the hypothesis that somatomedins are involved in developmental regulation of erythropoiesis.  相似文献   

15.
Erythroid progenitors from normal human marrow were purified by a two-step immune panning method permitting both the enrichment of erythroid progenitors (plating efficiency up to 10%) and the separation of CFU-E from BFU-E. The purified erythroid progenitors were grown in serum-replaced conditions; in some experiments at an average of one cell per well. Human recombinant granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin 3 (IL3), erythroid potentiating activity (EPA), and human erythropoietin (Epo) either recombinant or homogenous native were tested for their effect on CFU-E growth. Epo was an absolute requirement for CFU-E growth and was sufficient to obtain colony formation at the unicellular level whereas GM-CSF and IL3 did not further increase the plating efficiency. EPA potentiated the effect of Epo on this progenitor only in experiments performed at unicellular level. Human recombinant GM-CSF, IL3, Interleukin 1 alpha (IL1 alpha), and Epo were subsequently tested for their ability to promote BFU-E growth. GM-CSF and IL3 supported the growth of erythroid bursts in the presence of Epo, even at the unicellular level. However, IL3 promoted a higher number of bursts than GM-CSF under all conditions tested. These two growth factors have no or very small additive effects when tested in combination. IL1 alpha added to Epo alone had no effect on the growth of BFU-E whereas it potentiated the combined action of IL3 and GM-CSF on the primitive BFU-E. In conclusion, this study confirms at the unicellular level and under serum-free conditions that erythroid progenitors are regulated by multipotential growth factors in early phases of erythropoiesis and become sensitive only to Epo in later phases of differentiation.  相似文献   

16.
tsAEV-LSCC HD3 chicken erythroid cells transformed by the avian erythroblastosis virus (AEV) secrete an autocrine differentiation-inhibiting factor, ADIF, which blocks differentiation without affecting proliferation of the chicken erythroid cells that synthesize and secrete it into the culture medium. The chicken erythroleukemia cell ADIF activity is not restricted to avians. It prevents dimethylsulfoxide (DMSO) from stimulating murine Friend erythroleukemia cells to synthesize hemoglobin. ADIF also blocks erythroid differentiation in normal human and murine bone marrow where it selectively targets the early BFU-E (burst-forming) erythroid precursor cells without affecting the more advanced CFU-E erythroid precursor cells or cells of the different granulocyte-macrophage lineage.  相似文献   

17.
18.
The pathogenesis of anemia in patients with chronic renal failure was studied by analyzing the effect of uremic sera on the in vitro colony growth of erythroid (CFU-E) and granulocyte-macrophage (CFU-GM) progenitor cells. Uremic sera from 20 of 30 patients inhibited erythroid colony growth below 70% of control even when cultured with normal human bone marrow of the same blood type. On the other hand, only one of the sera inhibited colony growth of CFU-GM as compared with normal sera. On Sephadex G-15 gel filtration, the CFU-E-inhibiting activity appeared in two different fractions: the void volume peak and the delayed eluant before the second peak. The inhibiting activity in the former fraction was noted only in uremic sera. The results of this study suggest the existence of a serum inhibitor(s) of erythropoiesis with a relative molecular mass of more than 1500 Da which are virtually impossible to dialyze by conventional membranes.  相似文献   

19.
Mouse stromal cell lines (FLS lines), established from the livers of 13-day gestation mouse fetus, supported the proliferation and differentiation of the erythroid progenitor cells from mouse fetal livers and bone marrow in a semisolid medium in the presence of erythropoietin. A large erythroid colony of over 1000 benzidine-positive erythroid cells was developed from a single erythroid progenitor cell on the FLS cell layer after 4 days of culture. When in close contact with the layer, the erythroid progenitor cells divided rapidly with an average generation time of 9.6 h and mature erythroid cells, including enucleated erythrocytes, were produced. The present studies demonstrate that the microenvironment created by the stromal cells can support the rapid expansion of erythropoietic cell population in the fetal liver of mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号