首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(-)-Epigallocatechin-3-gallate (EGCG), a major constituent of green tea polyphenols, has been shown to suppress cancer cell proliferation and induce apoptosis. In this study we investigated its efficacy and the mechanism underlying its effect using human B lymphoblastoid cell line Ramos, and effect of co-treatment with EGCG and a chemotherapeutic agent on apoptotic cell death. EGCG induced dose- and time-dependent apoptotic cell death accompanied by loss of mitochondrial transmembrane potential, release of cytochrome c into the cytosol, and cleavage of pro-caspase-9 to its active form. EGCG also enhanced production of intracellular reactive oxygen species (ROS). Pretreatment with diphenylene iodonium chloride, an inhibitor of NAD(P)H oxidase and an antioxidant, partially suppressed both EGCG-induced apoptosis and production of ROS, implying that oxidative stress is involved in the apoptotic response. Furthermore, we showed that combined-treatment with EGCG and a chemotherapeutic agent, etoposide, synergistically induced apoptosis in Ramos cells.  相似文献   

2.
Green tea polyphenols exert a wide range of biochemical and pharmacological effects, and have been shown to possess antimutagenic and anticarcinogenic properties. Oxidative stress is involved in the pathogenesis of Parkinson's disease. However, although green tea polyphenols may be expected to inhibit the progression of Parkinson's disease on the basis of their known antioxidant activity, this has not previously been established. In the present study, we evaluated the neuroprotective effects of green tea polyphenols in the Parkinson's disease pathological cell model. The results show that the natural antioxidants have significant inhibitory effects against apoptosis induced by oxidative stress. 6-Hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells was chosen as the in vitro model of Parkinson's disease in our study. Apoptotic characteristics of PC12 cells were assessed by MTT assay, flow cytometry, fluorescence microscopy and DNA fragmentation. Green tea polyphenols and their major component, EGCG at a concentration of 200 microM, exert significant protective effects against 6-OHDA-induced PC12 cell apoptosis. EGCG is more effective than the mixture of green tea polyphenols. The antioxidant function of green tea polyphenols may account for this neuroprotective effect. The present study supports the notion that green tea polyphenols have the potential to be effective as neuropreventive agents for the treatment of neurodegenerative diseases.  相似文献   

3.
Green tea is rich in polyphenols, like catechins, which are thought to contribute to the health benefits of tea. The aim of this study was to evaluate the radioprotective effect of EGCG (epigallocatechin-3-gallate), a green tea catechin on γ-radiation induced cell damage. Under acellular condition of radiation exposure, pBR322 plasmid DNA was protected by EGCG in a concentration dependent manner. Treatment of murine splenocytes with EGCG 2h prior to radiation (3Gy), protected the cellular DNA against radiation-induced strand breaks. EGCG also inhibited γ-radiation induced cell death in splenocytes. EGCG pretreatment to the cells decreased the radiation induced lipid peroxidation and membrane damage. The levels of phase II enzymes, glutathione and lactate dehydrogenase were restored with EGCG treatment prior to radiation. Our results show that pretreatment with EGCG offers protection to pBR322 DNA under acellular condition and normal splenocytes under cellular condition, against γ-radiation induced damage and is better radioprotector in comparison to quercetin and vitamin C.  相似文献   

4.
Green tea, owing to its beneficial effect on health, is becoming more and more popular worldwide. (-)-Epigallocatechin-3-gallate (EGCG), the main ingredient of green tea polyphenols, is a known protective effect on injured neurons in neurodegenerative disease, such as Alzheimer's disease and Parkinson's disease. Paraquat (PQ) is a widely used herbicide that possesses a similar structure to MPP(+) and is toxic to mesencephalic dopaminergic neurons. In the present study, PQ-injured PC12 cells were chosen as an in vitro cell model of Parkinson's disease and the neuroprotective effects of EGCG were investigated. The results showed that EGCG attenuated apoptosis of PC12 cells induced by PQ. The possible mechanism may be associated with maintaining mitochondrial membrane potential, inhibiting caspase-3 activity and downregulating the expression of pro-apoptotic protein Smac in cytosol. The present study supports the notion that EGCG could be used as a neuroprotective agent for treatment of neurodegenerative diseases.  相似文献   

5.
6.
Many deleterious effects on the skin have been associated with the ultraviolet B (UVB) portion of the solar spectrum. The role of green tea polyphenols (GTP) in protecting HaCaT cells against the UVB-induced damages was examined. The promotion effect of low level GTP on cell viability was revealed in a dose-dependent manner. High level GTP had a cytotoxic effect. UVB induced destruction of HaCaT cells, including shedding of cell membrane microvilli, degeneration of nucleus and nucleols and changes of mitochondrial size and internal cristae. GTP alleviated the UVB-induced destructive morphological changes in HaCat cells. It is considered that GTP affords protection against the UVB-induced stress via both interacting with UVB-induced reactive oxygen species and attenuating mitochondrion-mediated apoptosis.  相似文献   

7.
Consumption of green tea is associated with a decrease in cardiovascular mortality. The beneficial health effects of green tea are attributed in part to polyphenols, organic compounds found in tea that lower blood pressure, reduce body fat, decrease LDL cholesterol, and inhibit inflammation. We hypothesized that epigallocatechin gallate (EGCG), the most abundant polyphenol in tea, inhibits endothelial exocytosis, the initial step in leukocyte trafficking and vascular inflammation. To test this hypothesis, we treated human umbilical-vein endothelial cells with EGCG and other polyphenols, and then measured endothelial exocytosis. We found that EGCG decreases endothelial exocytosis in a concentration-dependent manner, with the effects most prominent after 4 h of treatment. Other catechin polyphenols had no effect on endothelial cells. By inhibiting endothelial exocytosis, EGCG decreases leukocyte adherence to endothelial cells. In searching for the mechanism by which EGCG affects endothelial cells, we found that EGCG increases Akt phosphorylation, eNOS phosphorylation, and nitric oxide (NO) production. NOS inhibition revealed that NO mediates the anti-inflammatory effects of EGCG. Our data suggest that polyphenols can decrease vascular inflammation by increasing the synthesis of NO, which blocks endothelial exocytosis.  相似文献   

8.
Recently, we have shown that green tea (GT) consumption improves both reflexes and sensation in unilateral chronic constriction injury to the sciatic nerve. Considering the substantial neuroprotective properties of GT polyphenols, we sought to investigate whether (−)-epigallocatechin-3-gallate (EGCG) could protect the sciatic nerve and improve functional impairments induced by a crushing injury. We also examined whether neuronal cell apoptosis induced by the crushing injury is affected by EGCG treatment.  相似文献   

9.
10.
Jung JY  Mo HC  Yang KH  Jeong YJ  Yoo HG  Choi NK  Oh WM  Oh HK  Kim SH  Lee JH  Kim HJ  Kim WJ 《Life sciences》2007,80(15):1355-1363
Epigallocatechin-3-gallate (EGCG) is a major constituent of green tea polyphenols. This study was aimed to investigate the possible mechanisms of EGCG-mediated inhibition against apoptosis in rat pheochromocytoma PC12 cells by exposure to CoCl(2). Exposure to CoCl(2) caused the generation of ROS and induced cell death with appearance of apoptotic morphology and DNA fragmentation. However, EGCG rescued the loss of viability in the cells exposed to CoCl(2) and led the reduction of DNA fragmentation and sub-G(1) fraction of cell cycle. Also, EGCG attenuated the CoCl(2)-induced disruption of mitochondrial membrane potential (DeltaPsim), release of cytochrome c from the mitochondria to cytosol and abolished the CoCl(2)-stimulated activities of the caspase cascades, caspase-9 and caspase-3. In addition, EGCG ameliorated the increase in the Bax to Bcl-2 ratio, a marker of apoptosis proceeding, induced by CoCl(2) treatment. Taken together, the present results suggest that EGCG inhibit the CoCl(2)-induced apoptosis of PC12 cells through the mitochondria-mediated apoptosis pathway involved in modulating the Bcl-2 family.  相似文献   

11.
Li BH  Zhou YB  Guo SB  Wang CB 《Free radical research》2007,41(11):1224-1232
Polypeptide from Chlamys farreri (PCF) is a novel marine active product isolated from gonochoric Chinese scallop Chlamys farreri which has recently been found to be an effective antioxidant. In this study, we assessed the effect of PCF on UVB-induced intracellular signalling of apoptosis in HaCaT cells. Pre-treatment with PCF significantly inhibited UVB-induced apoptosis in HaCaT cells. PCF strongly reduced the intracellular reactive oxygen species (ROS) level followed by inhibiting the release of cytochrome c. The expression of CD95 and Fas-associating protein with death domain (FADD) was eliminated in a dose-dependent manner by PCF pre-treatment in UVB-irradiated HaCaT cells, followed by inhibition of cleavage of procaspase-8, whose activation induced cell apoptosis. Furthermore, pre-treatment with the ROS scavenger N-acetylcysteine (NAC) and the caspase-8 inhibitor z-IETD-fmk was found to effectively prevent UVB-induced apoptosis, suggesting that UVB-induced HaCaT cell apoptosis was partially due to generation of ROS and activation of the caspase-8 pathway. Consequently, the protective effect of PCF against UVB irradiation in HaCaT cells is exerted by suppression of generation of ROS followed by inhibition of cytochrome c release and inactivation of Fas-FADD-caspase-8 pathway, resulting in blockage of UVB-induced apoptosis.  相似文献   

12.
Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent present in green tea, is a promising chemopreventive agent. We recently showed that green tea polyphenols exert remarkable preventive effects against prostate cancer in a mouse model and many of these effects are mediated by the ability of polyphenols to induce apoptosis in cancer cells [Proc. Natl. Acad. Sci. USA 98 (2001) 10350]. Earlier, we showed that EGCG causes a G0/G1 phase cell cycle arrest and apoptosis of both androgen-sensitive LNCaP and androgen-insensitive DU145 human prostate carcinoma cells, irrespective of p53 status [Toxicol. Appl. Pharmacol. 164 (2000) 82]. Here, we provide molecular understanding of this effect. We tested a hypothesis that EGCG-mediated cell cycle dysregulation and apoptosis is mediated via modulation of cyclin kinase inhibitor (cki)-cyclin-cyclin-dependent kinase (cdk) machinery. As shown by immunoblot analysis, EGCG treatment of LNCaP and DU145 cells resulted in significant dose- and time-dependent (i) upregulation of the protein expression of WAF1/p21, KIP1/p27, INK4a/p16, and INK4c/p18, (ii) down-modulation of the protein expression of cyclin D1, cyclin E, cdk2, cdk4, and cdk6, but not of cyclin D2, (iii) increase in the binding of cyclin D1 toward WAF1/p21 and KIP1/p27, and (iv) decrease in the binding of cyclin E toward cdk2. Taken together, our results suggest that EGCG causes an induction of G1 phase ckis, which inhibits the cyclin-cdk complexes operative in the G0/G1 phase of the cell cycle, thereby causing an arrest, which may be an irreversible process ultimately leading to apoptotic cell death. This is the first systematic study showing the involvement of each component of cdk inhibitor-cyclin-cdk machinery during cell cycle arrest and apoptosis of human prostate carcinoma cells by EGCG.  相似文献   

13.
Green tea polyphenols have aroused considerable attention in recent years for preventing oxidative stress related diseases including cancer, cardiovascular disease, and degenerative disease. Neurodegenerative diseases are cellular redox status dysfunction related diseases. The present study investigated the different effects of the five main components of green tea polyphenols on 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells, the in vitro model of Parkinson's disease (PD). When the cells were treated with five catechins respectively for 30 min before exposure to 6-OHDA, (-)-epigallocatechins gallate (EGCG) and (-)-epicatechin gallate (ECG) in 50-200 microM had obvious concentration-dependent protective effects on cell viability, while (-)-epicatechin (EC), (+)-catechin ((+)-C), and (-)-epigallocatechin (EGC) had almost no protective effects. The five catechins also showed the same pattern described above of the different effects against 6-OHDA-induced cell apoptotic characteristics as analyzed by cell viability, fluorescence microscopy, flow cytometry, and DNA fragment electrophoresis methods. The present results indicated that 200 microM EGCG or ECG led to significant inhibition against typical apoptotic characteristics of PC12 cells, while other catechins had little protective effect against 6-OHDA-induced cell death. Therefore, the classified protective effects of the five catechins were in the order ECG> or = EGCG>EC> or = (+)-C>EGC. The antiapoptotic activities appear to be structurally related to the 3-gallate group of green tea polyphenols. The present data indicate that EGCG and ECG might be potent neuroprotective agents for PD.  相似文献   

14.
Epigallocatechin gallate (EGCG) is a major type of green tea polyphenols and is known to have cancer prevention effect. MicroRNAs (miRNAs) are 19 to 25 nucleotides and are believed to be important in gene regulation. In the present study, the influence of EGCG on the expressions of miRNAs in human cancer cells was investigated as this has not yet been reported. By miRNA microarray analysis, EGCG treatment was found to modify the expressions of some of the miRNAs in human hepatocellular carcinoma HepG2 cells, 13 were up-regulated and 48 were down-regulated. miR-16 is one of the miRNAs up-regulated by EGCG and one of its target genes is confirmed to be the anti-apoptotic protein Bcl-2. EGCG treatment induced apoptosis and down-regulated Bcl-2 in HepG2 cells. Transfection with anti-miR-16 inhibitor suppressed miR-16 expression and counteracted the EGCG effects on Bcl-2 down-regulation and also induction of apoptosis in cells. Results from the present study confirm the role of miR-16 in mediating the apoptotic effect of EGCG and also support the importance of miRNAs in the regulation of the biological activity of EGCG.  相似文献   

15.
Polypeptide from Chlamys farreri (PCF) is a novel marine active product isolated from gonochoric Chinese scallop Chlamys farreri which has recently been found to be an effective antioxidant. In this study, we assessed the effect of PCF on UVB-induced intracellular signalling of apoptosis in HaCaT cells. Pre-treatment with PCF significantly inhibited UVB-induced apoptosis in HaCaT cells. PCF strongly reduced the intracellular reactive oxygen species (ROS) level followed by inhibiting the release of cytochrome c. The expression of CD95 and Fas-associating protein with death domain (FADD) was eliminated in a dose-dependent manner by PCF pre-treatment in UVB-irradiated HaCaT cells, followed by inhibition of cleavage of procaspase-8, whose activation induced cell apoptosis. Furthermore, pre-treatment with the ROS scavenger N-acetylcysteine (NAC) and the caspase-8 inhibitor z-IETD-fmk was found to effectively prevent UVB-induced apoptosis, suggesting that UVB-induced HaCaT cell apoptosis was partially due to generation of ROS and activation of the caspase-8 pathway. Consequently, the protective effect of PCF against UVB irradiation in HaCaT cells is exerted by suppression of generation of ROS followed by inhibition of cytochrome c release and inactivation of Fas-FADD–caspase-8 pathway, resulting in blockage of UVB-induced apoptosis.  相似文献   

16.
Neuroblastoma is an extracranial solid tumor that usually occurs in infants and children. Malignant neuroblastomas remain mostly refractory to currently available chemotherapeutic agents. So, new therapeutic agents and their molecular mechanisms for induction of cell death must be explored for successful treatment of human malignant neuroblastomas. Two polyphenolic compounds, which are abundant in green tea, are (?)-epigallocatechin (EGC) and (?)-epigallocatechin-3-gallate (EGCG) that possess impressive anti-cancer properties. It is not known yet whether EGC and EGCG can modulate the levels of expression of specific microRNAs (miRs) for induction of apoptosis in human malignant neuroblastomas. In this investigation, we revealed that treatment with EGC or EGCG caused induction of apoptosis with significant changes in expression of specific oncogenic miRs (OGmiRs) and tumor suppressor miRs (TSmiRs) in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cell lines. Treatment of both cell lines with either 50 μM EGC or 50 μM EGCG decreased expression of the OGmiRs (miR-92, miR-93, and miR-106b) and increased expression of the TSmiRs (miR-7-1, miR-34a, and miR-99a) leading to induction of extrinsic and intrinsic pathways of apoptosis. Our data also demonstrated that overexpression of miR-93 decreased efficacy while overexpression of miR-7-1 increased efficacy of the green tea polyphenols for induction of apoptosis in both cell lines. In conclusion, our current investigation clearly indicates that overexpression of miR-7-1 can highly potentiate efficacy of EGCG for induction of apoptosis in human malignant neuroblastoma cells.  相似文献   

17.
Green tea polyphenol-(-)epigallocatechin-3-gallate (EGCG)-is a potent chemopreventive agent in many test systems and has been shown to inhibit tumor promotion and induce apoptosis. In this study we describe a novel observation that EGCG displayed strong inhibitory effects on the proliferation and viability of HTB-94 human chondrosarcoma cells in a dose-dependent manner and induced apoptosis. Investigation of the mechanism of EGCG-induced apoptosis revealed that treatment with EGCG resulted in DNA fragmentation, induction of caspase-3/CPP32 activity, and cleavage of the death substrate poly(ADP-ribose)polymerase (PARP). Pretreatment of cells with a synthetic pan-caspase inhibitor (Z-VAD-FMK) and a caspase-3-specific inhibitor (DEVD-CHO) prevented EGCG-induced PARP cleavage. The induction of apoptosis by EGCG via activation of caspase-3/CPP32-like proteases may provide a mechanistic explanation for its antitumor effects.  相似文献   

18.
Diet has a significant impact on colorectal cancer and both dietary fiber and plant-derived compounds have been independently shown to be inversely related to colon cancer risk. Butyrate (NaB), one of the principal products of dietary fiber fermentation, induces differentiation of colon cancer cell lines by inhibiting histone deacetylases (HDACs). On the other hand, (?)-epicatechin (EC) and (?)-epigallocatechin gallate (EGCG), two abundant phenolic compounds of green tea, have been shown to exhibit antitumoral properties. In this study we used colon cancer cell lines to study the cellular and molecular events that take place during co-treatment with NaB, EC and EGCG. We found that (i) polyphenols EC and EGCG fail to induce differentiation of colon adenocarcinoma cell lines; (ii) polyphenols EC and EGCG reduce NaB-induced differentiation; (iii) the effect of the polyphenols is specific for NaB, since differentiation induced by other agents, such as trichostatin A (TSA), was unaltered upon EC and EGCG treatment, and (iv) is independent of the HDAC inhibitory activity of NaB. Also, (v) polyphenols partially reduce cellular NaB; and (vi) on a molecular level, reduction of cellular NaB uptake by polyphenols is achieved by impairing the capacity of NaB to relocalize its own transporter (monocarboxylate transporter 1, MCT1) in the plasma membrane. Our findings suggest that beneficial effects of NaB on colorectal cancer may be reduced by green tea phenolic supplementation. This valuable information should be of assistance in choosing a rational design for more effective diet-driven therapeutic interventions in the prevention or treatment of colorectal cancer.  相似文献   

19.
Many beneficial proprieties have been associated with polyphenols from green tea, such as chemopreventive, anticarcinogenic, antiatherogenic and antioxidant actions. In this study, we investigated the effects of green tea polyphenols (GTPs) and their principal catechins on the function of P-glycoprotein (P-gp), which is involved in the multidrug resistance phenotype of cancer cells. GTPs (30 microg/ml) inhibit the photolabeling of P-gp by 75% and increase the accumulation of rhodamine-123 (R-123) 3-fold in the multidrug-resistant cell line CH(R)C5, indicating that GTPs interact with P-gp and inhibit its transport activity. Moreover, the modulation of P-gp transport by GTPs was a reversible process. Among the catechins present in GTPs, EGCG, ECG and CG are responsible for inhibiting P-gp. In addition, EGCG potentiates the cytotoxicity of vinblastine (VBL) in CH(R)C5 cells. The inhibitory effect of EGCG on P-gp was also observed in human Caco-2 cells, which form an intestinal epithelial-like monolayer. Our results indicate that, in addition to their anti-cancer properties, GTPs and more particularly EGCG inhibit the binding and efflux of drugs by P-gp. Thus, GTPs or EGCG might be potential agents for modulating the bioavailability of P-gp substrates at the intestine and the multidrug resistance phenotype associated with expression of this transporter in cancer cells.  相似文献   

20.
One of the best recognised polyphenols of plant origin, epigallocatechin-3-gallate (EGCG) is contained mainly in green tea and in grapes. Studies performed in vivo and in vitro have demonstrated high probability of anti-neoplastic potential of the compound, due to its capacity to induce programmed cell death. The present studies were aimed at evaluation of apoptosis induction in cells of three selected tumour cell lines, subjected to action of various concentrations of EGCG. The experiment was performed on cultures of HEp-2 laryngeal carcinoma cells, LoVo colon carcinoma cells, HeLa cervical carcinoma cells and on normal myoepithelial cell line, HS. EGCG was found to induce apoptosis in cells of the examined neoplastic lines in a dose-related manner. Moreover, effect of EGCG on normal cells of HS line was found to be much less pronounced as compared to effects exerted on sensitive neoplastic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号