首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
Fire-driven deforestation is the major source of carbon emissions from Amazonia. Recent expansion of mechanized agriculture in forested regions of Amazonia has increased the average size of deforested areas, but related changes in fire dynamics remain poorly characterized. We estimated the contribution of fires from the deforestation process to total fire activity based on the local frequency of active fire detections from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. High-confidence fire detections at the same ground location on 2 or more days per year are most common in areas of active deforestation, where trunks, branches, and stumps can be piled and burned many times before woody fuels are depleted. Across Amazonia, high-frequency fires typical of deforestation accounted for more than 40% of the MODIS fire detections during 2003–2007. Active deforestation frontiers in Bolivia and the Brazilian states of Mato Grosso, Pará, and Rondônia contributed 84% of these high-frequency fires during this period. Among deforested areas, the frequency and timing of fire activity vary according to postclearing land use. Fire usage for expansion of mechanized crop production in Mato Grosso is more intense and more evenly distributed throughout the dry season than forest clearing for cattle ranching (4.6 vs. 1.7 fire days per deforested area, respectively), even for clearings >200 ha in size. Fires for deforestation may continue for several years, increasing the combustion completeness of cropland deforestation to nearly 100% and pasture deforestation to 50–90% over 1–3-year timescales typical of forest conversion. Our results demonstrate that there is no uniform relation between satellite-based fire detections and carbon emissions. Improved understanding of deforestation carbon losses in Amazonia will require models that capture interannual variation in the deforested area that contributes to fire activity and variable combustion completeness of individual clearings as a function of fire frequency or other evidence of postclearing land use.  相似文献   

2.
Examining how both climate and species distribution patterns correlate with leaf morphology can give insights into the ecological and evolutionary patterns that drive adaptive selection of leaf form and function. Drip-tips are a common feature of leaves in rain forest tree species; they are thought to be an adaptation that aids leaf drying and maximizes photosynthesis in areas with high-rainfall climates. We tested whether this macroecological pattern holds true across the precipitation gradients in a non-rain forest region—the woodland savannas of Brazil known as the Cerrado—and compared our results with previous studies from Amazonia. Drip-tips were, as expected, less common overall in the drier Cerrado than in Amazonia. In addition, within the Cerrado, drip-tips were more prevalent in areas with higher rainfall as well as in Cerrado sites that were closer to Amazonia. Moreover, species that occurred across both the Cerrado and Amazonia had drip-tips more often than species that were found only in the Cerrado. These findings support the hypothesis that drip-tips are adaptive and that either the cost of retaining drip-tips is low or that in drier regions they have other benefits.  相似文献   

3.
Current deforestation practices are likely to result in fragmentation of much of Amazonia. Extreme eastern Amazonia (here referring to the region east of the Tocantins River) is the most populated area of the Brazilian Amazon and, unfortunately, represents the likely future scenario for remaining Amazonia. Although data are available on mammals in central Amazon fragments (the BDFFP project, ), surprisingly little is known about mammalian distribution and responses to fragmentation in eastern Amazonia. As an initial step towards understanding these responses, we compiled available data on mammalian assemblage composition in four fragments east of the Tocantins River, in northeastern Pará, Brazil, between 2002 and 2006. These fragments are privately owned and embedded within a matrix of secondary forest, pasture, slash-and-burn agriculture, and roads. Survey methods included diurnal line transect censusing, nocturnal censusing, live trapping of small mammals, opportunistic observations, and interviews with local informants. Despite environmental stresses, nearly all of the expected large mammalian fauna was recorded at least once, providing reason for optimism. We documented 58 species of mammals in nine orders, and most species we failed to encounter were small nocturnal taxa for which our sampling effort likely was inadequate. Although preliminary in nature, this study highlights the need for comprehensive faunal surveys and complementary ecological research on the fauna of extreme eastern Amazonia. It also indicates that the terrestrial fauna of the region shows indications of resilience in spite of a long history of exploitation.  相似文献   

4.
Brazil has presided over the most comprehensive agrarian reform frontier colonization program on Earth, in which ~1.2 million settlers have been translocated by successive governments since the 1970’s, mostly into forested hinterlands of Brazilian Amazonia. These settlements encompass 5.3% of this ~5 million km2 region, but have contributed with 13.5% of all land conversion into agropastoral land uses. The Brazilian Federal Agrarian Agency (INCRA) has repeatedly claimed that deforestation in these areas largely predates the sanctioned arrival of new settlers. Here, we quantify rates of natural vegetation conversion across 1911 agrarian settlements allocated to 568 Amazonian counties and compare fire incidence and deforestation rates before and after the official occupation of settlements by migrant farmers. The timing and spatial distribution of deforestation and fires in our analysis provides irrefutable chronological and spatially explicit evidence of agropastoral conversion both inside and immediately outside agrarian settlements over the last decade. Deforestation rates are strongly related to local human population density and road access to regional markets. Agrarian settlements consistently accelerated rates of deforestation and fires, compared to neighboring areas outside settlements, but within the same counties. Relocated smallholders allocated to forest areas undoubtedly operate as pivotal agents of deforestation, and most of the forest clearance occurs in the aftermath of government-induced migration.  相似文献   

5.
Challenges to estimating carbon emissions from tropical deforestation   总被引:2,自引:0,他引:2  
An accurate estimate of carbon fluxes associated with tropical deforestation from the last two decades is needed to balance the global carbon budget. Several studies have already estimated carbon emissions from tropical deforestation, but the estimates vary greatly and are difficult to compare due to differences in data sources, assumptions, and methodologies. In this paper, we review the different estimates and datasets, and the various challenges associated with comparing them and with accurately estimating carbon emissions from deforestation. We performed a simulation study over legal Amazonia to illustrate some of these major issues. Our analysis demonstrates the importance of considering land-cover dynamics following deforestation, including the fluxes from reclearing of secondary vegetation, the decay of product and slash pools, and the fluxes from regrowing forest. It also suggests that accurate carbon-flux estimates will need to consider historical land-cover changes for at least the previous 20 years. However, this result is highly sensitive to estimates of the partitioning of cleared carbon into instantaneous burning vs. long-timescale slash pools. We also show that carbon flux estimates based on 'committed flux' calculations, as used by a few studies, are not comparable with the 'annual balance' calculation method used by other studies.  相似文献   

6.
The potential loss or large-scale degradation of the tropical rainforests has become one of the iconic images of the impacts of twenty-first century environmental change and may be one of our century's most profound legacies. In the Amazon region, the direct threat of deforestation and degradation is now strongly intertwined with an indirect challenge we are just beginning to understand: the possibility of substantial regional drought driven by global climate change. The Amazon region hosts more than half of the world's remaining tropical forests, and some parts have among the greatest concentrations of biodiversity found anywhere on Earth. Overall, the region is estimated to host about a quarter of all global biodiversity. It acts as one of the major 'flywheels' of global climate, transpiring water and generating clouds, affecting atmospheric circulation across continents and hemispheres, and storing substantial reserves of biomass and soil carbon. Hence, the ongoing degradation of Amazonia is a threat to local climate stability and a contributor to the global atmospheric climate change crisis. Conversely, the stabilization of Amazonian deforestation and degradation would be an opportunity for local adaptation to climate change, as well as a potential global contributor towards mitigation of climate change. However, addressing deforestation in the Amazon raises substantial challenges in policy, governance, sustainability and economic science. This paper introduces a theme issue dedicated to a multidisciplinary analysis of these challenges.  相似文献   

7.
There has been growing concern in Brazil for environmental issues in the last two decades. The conservation policies for Amazonia, which still represents the largest portion of forests of the country, are still based on isolated decisions made in the late 1970's. Among these policies there is, for instance, the plan for the establishment of a net of National Parks, proposed by Wetterberg et al. (1), based on the 'Pleistocene refugia' model. These refugia are areas of high species endemism, representing forest islands formed during the dry periods of the Pleistocene age, constituting the center of evolution and dispersal of Amazonian species (2). A number of parks and biological reserves have since been established and the decreese of laws protecting some elements of the fauna have been implemented. In 1979, studies for a more comprehensive plan for the conservation and development of Brazilian Amazonia were carried out in several institutions committed to research in Amazonia. As a result, several documents were handed to the government, but nothing has yet been implemented. Indeed, no environmental policy for Amazonia will succeed without an effective and comprehensive social plan, and the latter has yet to be formulated.  相似文献   

8.
The depth of the root system controls the maximum amount of soil water that can be transpired by the vegetation into the atmosphere during dry periods. Water uptake from deep soil layers has been found to contribute significantly to the dry season transpiration at some sites in Amazonia and it has been estimated that large parts of the evergreen forests in Amazonia depend on deep roots to survive the dry season. Thus, the presence of deep roots might provide a significant source of atmospheric moisture during the dry season, and one which would be affected by deforestation. We investigate the role of deep-rooted vegetation and its removal in the context of Amazonian deforestation using an atmospheric General Circulation Model (GCM). A distribution of deep roots is obtained by a numerical optimization approach. The simulated climate with the use of the calculated deep roots substantially improves the seasonal characteristics of the GCM. Three additional simulations are then conducted in order to isolate the effect of rooting depth reduction from other parameter changes associated with large-scale deforestation. Most of the climatic effects occur during the dry season and are attributed to the reduction of rooting depth. Dry periods are found to last longer, being more intense with drier and warmer air, while the wet season remains fairly unchanged. The implications of these climatic effects for the re-establishment of the natural evergreen forest are discussed.  相似文献   

9.
Increased trade in non-timber forest products (NTFPs) has been promoted as one possible means to slow tropical deforestation by increasing the economic value of intact forest. A market survey of NTFPs occurring in the Capim River basin in eastern Amazonia, Brazil demonstrated that the reality for many smallholder communities in frontier and remote regions includes chronic transportation difficulties, high variability in fruit production, perishable products and lack of market expertise. In some communities, declining abundance of NTFPs due to logging and fire has resulted in a lack of forest products to even meet subsistence needs. In areas close to cities where transportation is assured and where forest clearing has eroded the natural occurrence of some valuable native NTFPs, smallholders who manage and successfully market native fruit and medicinal species are overcoming these obstacles. In frontier regions undergoing rapid transformation, however, decline in locally used and regionally marketed NTFPs currently pose detrimental consequences for communities. Findings suggest that an overemphasis on NTFP marketing has diverted attention from local livelihood, resource access and subsistence issues.  相似文献   

10.
We propose to compare avoided emissions from ethanol use in Brazil with emissions caused by the use of fossil fuel, and by land use changes, specifically Amazon deforestation. The avoided emissions of CO2 in Brazil due to ethanol use in 2008 ranged from approximately 9 to 12 Tg C yr?1. These values are an order of magnitude higher than the amount of carbon that could be potentially sequestered in soils if sugarcane cultivation in Brazil switches completely to mechanized harvesting, and two orders of magnitude higher than the carbon emissions in soils cultivated with sugarcane and that undergo harvest with burning. In relation to fossil fuel emissions, ethanol avoided emissions are equivalent to 20–30% of the carbon emissions associated with the use of gasoline and diesel in the transportation sector, and to approximately 10% of the total use of fossil fuel in the country. When compared with the carbon emissions from Amazon deforestation ethanol avoided emissions are again one order of magnitude lower. We conclude that ethanol avoided emissions are relatively important within the transport sector, but are still incipient if compared with the emissions from total fossil fuel combustion and emissions from deforestation indicating that climate mitigation efforts in Brazil needs to focus outside of biofuel production. Consequently, we suggest that Brazil develop equally strong actions towards increased energy efficiency use in the country and, more importantly to drastically reduce carbon emissions associated with Amazon deforestation.  相似文献   

11.
The introduction of payments for environmental services (PES) offers an opportunity for traditional and indigenous populations to be compensated for contributing to carbon sequestration in meeting the challenge of ameliorating global warming. As one mechanism among several for promoting biodiversity conservation and sustainable development, pro-poor PES initiatives could eventually be incorporated into an international post-Koyoto framework to encourage reduced emissions from deforestation. Brazil's Proambiente PES scheme for small farmers in Amazonia has enjoyed some limited success, but it has fallen short of expectations. Its performance has been undermined by the lack of a national legal framework, limited funding, reduced implementation capacity, poor cross-sector collaboration and incompatibility with existing regional development policies. These challenges are being addressed by the federal government in cooperation with civil society with a view to scaling up Proambiente into a national programme.  相似文献   

12.
Interactions of indigenous peoples with the surrounding non-indigenous society are often the main sources of social and environmental changes in indigenous lands. In the case of the Suruí in Brazilian Amazonia’s “arc of deforestation,” these influences are leading to deforestation and logging that threaten both the forest and the sustainability of the group’s productive systems. The Suruí tribal leadership has initiated a proposal for an economic alternative based on Reducing Emissions from Deforestation and Degradation (REDD). This has become a key case in global discussions on indigenous participation in REDD. The realism of the baseline scenario that serves as a reference for determining the amount of deforestation and emissions avoided by the proposed project is critical to assuring the reality of the carbon benefits claimed. Here we examine the SIMSURUI model, its input parameters and the implications of the Suruí Forest Carbon Project for indigenous participation in climate mitigation efforts.  相似文献   

13.
The presence of researchers from Western (i.e., developed world) institutions in Amazonia has frequently been contentious due to fears of ‘scientific imperialism’ or suspicions that they may be exerting undue influence over research agendas and knowledge production to the detriment of local researchers. Such negative perceptions are widespread, but not well substantiated. A more nuanced understanding of these issues requires information on who is conducting research in Amazonia and how knowledge production has changed over time. We performed a bibliometric analysis on Thomson Reuters'ISI Web of Science of all research articles about the Amazon published in three time periods: 1986–1989, 1996–1999, and 2006–2009. We found that the number of articles published and the diversity of countries involved in Amazonian research increased dramatically over the three time periods. The representation of several Amazonian countries—especially Brazil—increased, while the proportion of articles without a single author from an Amazonian country also increased. The results indicate that the research capacity of Amazonian countries has increased, but that leadership of high‐impact projects may still largely reside with researchers from developed countries.  相似文献   

14.
Understanding the interplay between climate and land-use dynamics is a fundamental concern for assessing the vulnerability of Amazonia to climate change. In this study, we analyse satellite-derived monthly and annual time series of rainfall, fires and deforestation to explicitly quantify the seasonal patterns and relationships between these three variables, with a particular focus on the Amazonian drought of 2005. Our results demonstrate a marked seasonality with one peak per year for all variables analysed, except deforestation. For the annual cycle, we found correlations above 90% with a time lag between variables. Deforestation and fires reach the highest values three and six months, respectively, after the peak of the rainy season. The cumulative number of hot pixels was linearly related to the size of the area deforested annually from 1998 to 2004 (r2=0.84, p=0.004). During the 2005 drought, the number of hot pixels increased 43% in relation to the expected value for a similar deforested area (approx. 19000km2). We demonstrated that anthropogenic forcing, such as land-use change, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region even with decreased deforestation rates. We may expect that the ongoing deforestation, currently based on slash and burn procedures, and the use of fires for land management in Amazonia will intensify the impact of droughts associated with natural climate variability or human-induced climate change and, therefore, a large area of forest edge will be under increased risk of fires.  相似文献   

15.
Tropical forests are now at the center stage of climate mitigation policies worldwide given their roles as sources of carbon emissions resulting from deforestation and forest degradation. Although the international community has created mechanisms such as REDD+ to reduce those emissions, developing tropical countries continue to invest in infrastructure development in an effort to spur economic growth. Construction of roads in particular is known to be an important driver of deforestation. This article simulates the impact of road construction on deforestation in Western Amazonia, Peru, and quantifies the amount of carbon emissions associated with projected deforestation. To accomplish this objective, the article adopts a Bayesian probit land change model in which spatial dependencies are defined between regions or groups of pixels instead of between individual pixels, thereby reducing computational requirements. It also compares and contrasts the patterns of deforestation predicted by both spatial and non-spatial probit models. The spatial model replicates complex patterns of deforestation whereas the non-spatial model fails to do so. In terms of policy, both models suggest that road construction will increase deforestation by a modest amount, between 200–300 km2. This translates into aboveground carbon emissions of 1.36 and 1.85 x 106 tons. However, recent introduction of palm oil in the region serves as a cautionary example that the models may be underestimating the impact of roads.  相似文献   

16.
Do we need to devalue Amazonia and other large tropical forests?   总被引:1,自引:0,他引:1  
Attempts to determine global priorities for conservation and studies aimed at highlighting the conservation value of one continental region over another often devalue specific regions. Amazonia has been a particular recipient of this treatment in a number of recent studies. We suggest that this type of approach is not necessary at this scale, and we argue that the consequences could be devastating for the largest forests of the world. Among our concerns about the treatment of these forests (Amazonia, the Congo Basin and New Guinea) is that there seems to be a lack of appreciation for, or sufficient study of, important biogeographic subdivisions within these regions. In Amazonia, the south‐eastern portion of the basin (the Belém/Pará region) has not been considered a global conservation priority, despite the fact that it is experiencing by far the highest deforestation rates. Parsimony Analyses of Endemicity and genetic data suggest that many Amazonian forest taxa are comprised of numerous regionally distinct units, and this may also be true in other large tropical forests. Such patterns need to be documented for adequate conservation of tropical biodiversity, but this might not happen if these regions are not recognized as priorities for conservation at a global scale.  相似文献   

17.
Aim Habitat loss and climate change are two major drivers of biological diversity. Here we quantify how deforestation has already changed, and how future climate scenarios may change, environmental conditions within the highly disturbed Atlantic forests of Brazil. We also examine how environmental conditions have been altered within the range of selected bird species. Location Atlantic forests of south‐eastern Brazil. Methods The historical distribution of 21 bird species was estimated using Maxent . After superimposing the present‐day forest cover, we examined the environmental niches hypothesized to be occupied by these birds pre‐ and post‐deforestation using environmental niche factor analysis (ENFA). ENFA was also used to compare conditions in the entire Atlantic forest ecosystem pre‐ and post‐deforestation. The relative influence of land use and climate change on environmental conditions was examined using analysis of similarity and principal components analysis. Results Deforestation in the region has resulted in a decrease in suitable habitat of between 78% and 93% for the Atlantic forest birds included here. Further, Atlantic forest birds today experience generally wetter and less seasonal forest environments than they did historically. Models of future environmental conditions within forest remnants suggest generally warmer conditions and lower annual variation in rainfall due to greater precipitation in the driest quarter of the year. We found that deforestation resulted in a greater divergence of environmental conditions within Atlantic forests than that predicted by climate change. Main conclusions The changes in environmental conditions that have occurred with large‐scale deforestation suggest that selective regimes may have shifted and, as a consequence, spatial patterns of intra‐specific variation in morphology, behaviour and genes have probably been altered. Although the observed shifts in available environmental conditions resulting from deforestation are greater than those predicted by climate change, the latter will result in novel environments that exceed temperatures in any present‐day climates and may lead to biotic attrition unless organisms can adapt to these warmer conditions. Conserving intra‐specific diversity over the long term will require considering both how changes in the recent past have influenced contemporary populations and the impact of future environmental change.  相似文献   

18.
Armenteras D  Retana J 《PloS one》2012,7(4):e35288
According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests.  相似文献   

19.
  • 1 Brazil is the second most bat species‐rich country in the world, but the available information on the occurrence and distribution of bat species in Brazil is still heterogeneous and fragmented.
  • 2 We review the occurrence and distribution of bat species in Brazil, analyse the spatial performance of inventories conducted to date and identify knowledge gaps. We also identify the main factors contributing to the recent increase in the knowledge of the Brazilian bat fauna, and make suggestions for maintaining this momentum into the near future.
  • 3 We plotted record coordinates on a map, grouped them in 0.5 degrees of latitude × 0.5 degrees of longitude grid cells, and analysed records for each of the five terrestrial biomes in Brazil, and for the 1439 priority polygons for the conservation of Brazilian biodiversity.
  • 4 We identified 5502 formal bat records in Brazil, indicating that less than 10% of the country is minimally surveyed, and that for nearly 60% of Brazil there is not a single record of bat species. Record coverage varies from 79% in the Atlantic Forest to 24% in Amazonia, but none of the Brazilian biomes is well surveyed for bats. Bat species have been recorded in only 15% of the priority areas for Brazilian biodiversity conservation.
  • 5 If the current rate of recording bats in empty grid cells (10% every 4 years) was maintained, it would take 33 years for all cells to have a single record. If the current rate of recording ≥20 species in a grid cell (0.8% per year) was maintained, it would take 200 years for the bat fauna of Brazil to be minimally surveyed. Alarmingly, most of the data‐poor areas are at the expansion frontiers of the agro‐business, near the surrounding deforestation fronts.
  • 6 We make recommendations for scientific research on bats in Brazil, to ensure the conservation of this ecologically important taxon.
  相似文献   

20.
The spatial distribution of human activities in forest frontier regions is strongly influenced by transportation infrastructure. With the planned paving of 6000 km of highway in the Amazon Basin, agricultural frontier expansion will follow, triggering potentially large changes in the location and rate of deforestation. We developed a land‐cover change simulation model that is responsive to road paving and policy intervention scenarios for the BR‐163 highway in central Amazonia. This corridor links the cities of Cuiabá, in central Brazil, and Santarém, on the southern margin of the Amazon River. It connects important soybean production regions and burgeoning population centers in Mato Grosso State with the international port of Santarém, but 1000 km of this road are still not paved. It is within this context that the Brazilian government has prioritized the paving of this road to turn it into a major soybean exportation facility. The model assesses the impacts of this road paving within four scenarios: two population scenarios (high and moderate growth) and two policy intervention scenarios. In the ‘business‐as‐usual’ policy scenario, the responses of deforestation and land abandonment to road paving are estimated based on historical rates of Amazon regions that had a major road paved. In the ‘governance’ scenario, several plausible improvements in the enforcement of environmental regulations, support for sustainable land‐use systems, and local institutional capacity are invoked to modify the historical rates. Model inputs include data collected during expeditions and through participatory mapping exercises conducted with agents from four major frontier types along the road. The model has two components. A scenario‐generating submodel is coupled to a landscape dynamics simulator, ‘DINAMICA’, which spatially allocates the land‐cover transitions using a GIS database. The model was run for 30 years, divided into annual time steps. It predicted more than twice as much deforestation along the corridor in business‐as‐usual vs. governance scenarios. The model demonstrates how field data gathered along a 1000 km corridor can be used to develop plausible scenarios of future land‐cover change trajectories that are relevant to both global change science and the decision‐making process of governments and civil society in an important rainforest region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号