首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparison of the performance of five modelling methods using presence/absence (generalized additive models, discriminant analysis) or presence-only (genetic algorithm for rule-set prediction, ecological niche factor analysis, Gower distance) data for modelling the distribution of the tick species Boophilus decoloratus (Koch, 1844) (Acarina: Ixodidae) at a continental scale (Africa) using climate data was conducted. This work explicitly addressed the usefulness of clustering using the normalized difference vegetation index (NDVI) to split original records and build partial models for each region (cluster) as a method of improving model performance. Models without clustering have a consistently lower performance (as measured by sensitivity and area under the curve [AUC]), although presence/absence models perform better than presence-only models. Two cluster-related variables, namely, prevalence (commonness of tick records in the cluster) and marginality (the relative position of the climate niche occupied by the tick in relation to that available in the cluster) greatly affect the performance of each model (P < 0.05). Both sensitivity and AUC are better for NDVI-derived clusters where the tick is more prevalent or its marginality is low. However, the total size of the cluster or its fragmentation (measured by Shannon's evenness index) did not affect the performance of models. Models derived separately for each cluster produced the best output but resulted in a patchy distribution of predicted occurrence. The use of such a method together with weighting procedures based on prevalence and marginality as derived from populations at each cluster produced a slightly lower predictive performance but a better estimation of the continental distribution of the tick. Therefore, cluster-derived models are able to effectively capture restricting conditions for different tick populations at a regional level. It is concluded that data partitioning is a powerful method with which to describe the climate niche of populations of a tick species, as adapted to local conditions. The use of this methodology greatly improves the performance of climate suitability models.  相似文献   

2.
Climate models project a hot and dry future for Southern Africa. In this research, Maximum Entropy was used to model the extent to which climate change, land cover and distance from water edges may influence current and future distribution of the African skimmer in the mid-Zambezi Valley. Global Biodiversity Information Facility data collected between the years 2000–2019 were used to develop the models. Three models were built: one for current distribution and two for future distribution under Representative Concentration Pathways (RCPs) 2.6 and 6.0. Results revealed that annual precipitation and distance from water edges were the most important predictors of habitat suitability for the African skimmer under current and future climate. Temperature and land cover were least important in explaining current and future distribution of the species. The RCP 2.6 predicted future decrease in suitable habitat for the African skimmer in the mid-Zambezi Valley, while RCP 6.0 predicted future increase in suitable habitat for the species. This research conclusively revealed that precipitation and distance from water edges were consistently key predictors of suitable habitat for the African skimmer.  相似文献   

3.
The tropical bont tick, Amblyomma variegatum, transmits heartwater in sub-Saharan Africa and in the Caribbean. This species has a broad geographic distribution, ranging from Madagascar and other islands in the Indian Ocean through most of sub-Saharan Africa, to several islands in the eastern Caribbean Sea. Blood fed male A. variegatum secrete an attraction–aggregation–attachment (AAA) pheromone which, combined with CO2, excites host finding and formation of feeding clusters of these ticks. However, it is not known whether the composition of the pheromone varies throughout A. variegatums geographic range. Extracts of fed male ticks were examined for phenols and volatile organic acids by gas chromatography and mass spectrometry to determine whether differences occur in the pheromone components of populations of this species across the geographic range (Guadeloupe, Zimbabwe, Zambia and Rwanda). No significant difference in the chemical composition of the pheromone in relation to geographic range was found. No significant differences in rates of attachment in response to native versus foreign extracts were found in on-host attachment tests comparing ticks from two countries, Guadeloupe (Caribbean) and Zimbabwe (African). This finding was confirmed in more detailed studies with ticks from Guadeloupe and four African countries (Kenya, Rwanda, Zambia and Zimbabwe). On-host attachment assays from these countries did not detect consistent differences in response to extracts from different locations.In an olfactometer bioassay, females were not consistently more attracted to extracts from their native locality than from any of the foreign localities.We conclude that despite the widespread distribution of A. variegatum over both hemispheres, no significant differences in pheromone composition or biological responses to male tick pheromone secretions occur.  相似文献   

4.
The brown ear tick Rhipicephalus appendiculatus, vector of East Coast fever (ECF) and related cattle diseases caused by Theileria parva has never been reported from the Horn of Africa. Habitat suitability for this tick species was predicted using Maxent modelling technique based on R. appendiculatus records in Sub-Saharan Africa. Two models were developed: the first is based on the tropical R. appendiculatus distribution and the one is based on the distribution records in the temperate region of Sub-Saharan Africa. The tropical model shows favourable habitat in much of the Ethiopian highlands. The whole Djibouti, the south eastern Ethiopian lowlands, majority of Somalia and Eritrea were found to be not suitable for the survival and development of this tick species. Highly suitable areas occur in areas which have moderate temperature and high precipitation. Introductions of R. appendiculatus into the Horn of Africa probably have been prevented by the natural barrier between the known R. appendiculatus distribution range in East Africa and the Horn of Africa. The effect of an introduction of R. appendiculatus and thereby ECF into the Horn of Africa could be catastrophic since the cattle in this area have no immunity against ECF, and mortality might be considerable in all age groups of cattle.  相似文献   

5.
This paper focuses on the distribution of the cattle tick, Boophilus microplus, in Mexico. The study is aimed to understand the climate factors responsible of the recorded distribution that can statistically define the suitable habitat for the tick. Sites where the tick is recorded display significantly higher values of some climate variables in comparison with those where the tick is absent, namely mean monthly temperature (T) and atmospheric water vapour (W), yearly accumulated T, W and rainfall (R) (p < 0.001 for every variable), with smaller significance for the yearly sum of T/R and T/W ratios (p < 0.05). Interestingly, variables involving the Normalized Derived Vegetation Index (NDVI) do not shown statistical differences between the sites where the tick is present or absent. The best set of habitat-defining variables was integrated into a framework to assess the habitat suitability for the tick in Mexico. We used a point-to-point similarity metric to assign a classification value to a candidate site based on the proximity in environmental space of the most similar record site. A combination of 7 yearly and monthly values for temperature, rainfall and water vapour variables captured the tick distribution. Model performance, as tested with a separate set of distribution tests and defined by the AUC value, was 0.89. Causes of errors as detected with a visual comparison of both known and predicted distribution of the tick may be attributed to the use of a medium resolution, unable to capture locally important features of tick distribution, and to incomplete collections in some parts of the country.  相似文献   

6.
Will climate change affect ectoparasite species ranges?   总被引:2,自引:0,他引:2  
Aim  Over the next 100 years, human-driven climate change and resulting changes in species occurrences will have global impacts on biodiversity, ecosystem function, and human health. Here we examine how climate change may affect the occurrences of tick species in Africa and alter the suitability of habitat outside Africa for African ticks.
Location  Africa and the world.
Methods  We predicted continental and global changes in habitat suitability for each of 73 African tick species, using multiple regression models in different climate change scenarios that cover a wide range of uncertainty.
Results  Global habitat suitability improves for nearly all tick species under each of a representative range of eight climate change scenarios. Depending on the scenario, African tick species experience an average increase in global habitat suitability of between 1 million and 9 million square kilometres between 1990 and 2100.
Main conclusions  The potential for successful translocations of ticks and their pathogens from Africa to the rest of the world is likely to increase over the next 100 years. Although the general trend is one of range expansion, there are winners and losers among tick species in each scenario, suggesting that tick community composition will be disrupted substantially by climate change. If this is also typical of other invertebrates, then climate change will disrupt not only the geographic location of communities but also their structure. Changes in tick communities are also likely to influence tick-borne pathogens.  相似文献   

7.
Aim Predicting distribution patterns of whale sharks (Rhincodon typus, Smith 1828) in the open ocean remains elusive owing to few pelagic records. We developed multivariate distribution models of seasonally variant whale shark distributions derived from tuna purse‐seine fishery data. We tested the hypotheses that whale sharks use a narrow temperature range, are more abundant in productive waters and select sites closer to continents than the open ocean. Location Indian Ocean. Methods We compared a 17‐year time series of observations of whale sharks associated with tuna purse‐seine sets with chlorophyll a concentration and sea surface temperature data extracted from satellite images. Different sets of pseudo‐absences based on random distributions, distance to shark locations and tuna catch were generated to account for spatiotemporal variation in sampling effort and probability of detection. We applied generalized linear, spatial mixed‐effects and Maximum Entropy models to predict seasonal variation in habitat suitability and produced maps of distribution. Results The saturated generalized linear models including bathymetric slope, depth, distance to shore, the quadratic of mean sea surface temperature, sea surface temperature variance and chlorophyll a had the highest relative statistical support, with the highest percent deviance explained when using random pseudo‐absences with fixed effect‐only models and the tuna pseudo‐absences with mixed‐effects models (e.g. 58% and 26% in autumn, respectively). Maximum Entropy results suggested that whale sharks responded mainly to variation in depth, chlorophyll a and temperature in all seasons. Bathymetric slope had only a minor influence on the presence. Main conclusions Whale shark habitat suitability in the Indian Ocean is mainly correlated with spatial variation in sea surface temperature. The relative influence of this predictor provides a basis for predicting habitat suitability in the open ocean, possibly giving insights into the migratory behaviour of the world’s largest fish. Our results also provide a baseline for temperature‐dependent predictions of distributional changes in the future.  相似文献   

8.
Climatic changes may lead to drastic changes in the distribution of arthropods important in human health. We tracked changes in habitat suitability for the tick Ixodes ricinus in Europe from 1900 to 1999, using a geographically extensive gridded climate data set. For the whole period, 52% of the territory was always unsuitable for the tick. In the grid, 6.11% of the cells were classified as having a deterministic drift with positive trend and 7.4% as deterministic drift with a negative trend. A total of 17.25% of cells were classified as exhibiting a random walk behavior, with a trend to increase of habitat suitability (9.57%) or decrease (7.68%). Zones of deterministic trend extend into most of Ireland and parts of the United Kingdom and France. Total and summer rainfall primarily drive changes in habitat suitability in these sites. Areas of random walk are common in Scandinavia, central Europe, and the Balkans, with summer rainfall and temperature largely directing the changes. Sites of reported increased abundance of I. ricinus coincided with areas of increased habitat suitability over the last 20–30 years, but this feature showed a long-term random walk negative trend. Habitat suitability for I. ricinus remains relatively stable in Europe, with no sites showing permanent changes in habitat suitability (negative to sustained positive or vice versa). However, some zones in the continent showed a clear trend to increase or decrease.  相似文献   

9.
Climate change poses a serious threat to biodiversity. Predicting the effects of climate change on the distribution of a species' habitat can help humans address the potential threats which may change the scope and distribution of species. Pterocarya stenoptera is a common fast‐growing tree species often used in the ecological restoration of riverbanks and alpine forests in central and eastern China. Until now, the characteristics of the distribution of this species' habitat are poorly known as are the environmental factors that influence its preferred habitat. In the present study, the Maximum Entropy Modeling (Maxent) algorithm and the Genetic Algorithm for Ruleset Production (GARP) were used to establish the models for the potential distribution of this species by selecting 236 sites with known occurrences and 14 environmental variables. The results indicate that both models have good predictive power. Minimum temperature of coldest month (Bio6), mean temperature of warmest quarter (Bio10), annual precipitation (Bio12), and precipitation of driest month (Bio14) were important environmental variables influencing the prediction of the Maxent model. According to the models, the temperate and subtropical regions of eastern China had high environmental suitability for this species, where the species had been recorded. Under each climate change scenario, climatic suitability of the existing range of this species increased, and its climatic niche expanded geographically to the north and higher elevation. GARP predicted a more conservative expansion. The projected spatial and temporal patterns of P. stenoptera can provide reference for the development of forest management and protection strategies.  相似文献   

10.
11.
Understanding how specific environmental factors shape gene flow while disentangling their importance relative to the effects of geographical isolation is a major question in evolutionary biology and a specific goal of landscape genetics. Here, we combine information from nuclear microsatellite markers and ecological niche modelling to study the association between climate and spatial genetic structure and variability in Engelmann oak (Quercus engelmannii), a wind-pollinated species with high potential for gene flow. We first test whether genetic diversity is associated with climatic niche suitability and stability since the Last Glacial Maximum (LGM). Second, we use causal modelling to analyse the potential influence of climatic factors (current and LGM niche suitability) and altitude in the observed patterns of genetic structure. We found that genetic diversity is negatively associated with local climatic stability since the LGM, which may be due to higher immigration rates in unstable patches during favourable climatic periods and/or temporally varying selection. Analyses of spatial genetic structure revealed the presence of three main genetic clusters, a pattern that is mainly driven by two highly differentiated populations located in the northern edge of the species distribution range. After controlling for geographic distance, causal modelling analyses showed that genetic relatedness decreases with the environmental divergence among sampling sites estimated as altitude and current and LGM niche suitability. Natural selection against nonlocal genotypes and/or asynchrony in reproductive phenology may explain this pattern. Overall, this study suggests that local environmental conditions can shape patterns of genetic structure and variability even in species with high potential for gene flow and relatively small distribution ranges.  相似文献   

12.
In order to implement a robust integrated tick and tick-borne disease control programme in Tanzania, based on ecological and epidemiological knowledge of ticks and their associated diseases, a national tick and sero-surveillance study was carried out in all 21 regions of the mainland, as well as on Mafia Island, between 1998 and 2001. The current distributions of Rhipicephalus appendiculatus, R. pravus, Amblyomma variegatum, A. gemma, and A. lepidum are illustrated and discussed. Tick distribution maps were assessed using the Weights-of-Evidence method (WofE), and employing temperature, humidity, NDVI, rainfall, and land-cover predictive data. Ground-truthing was done to check correspondence both of the data employed in prediction with land-cover characteristics discerned in the field as well as of the surveyed and predicted tick distributions. Statistical methods were used to analyse associations of the tick species with their environment, cattle density, and other ticks. Except for R. appendiculatus, no appreciable changes were demonstrated in the predicted and observed tick distributions compared to the existing maps that originated in the 1950–1960s. Cattle density influenced the distribution of A. variegatum and, to a certain extent, of A. lepidum, but had no appreciable influence on the distribution of any of the other ticks discussed in this paper, neither did livestock movement. Distinct differences for environmental requirements where observed between different tick species within the same genus. The predictive maps of R. appendiculatus and R. pravus suggest their mutually exclusive distribution in Tanzania, and simultaneous statistical analysis showed R. pravus as a greater specialist. Of the three Amblyomma species, A. variegatum is the most catholic tick species in Tanzania, while both A. gemma and A. lepidum belong to the more specialized species. Despite dissimilar habitat preferences, all three Amblyomma spp. co-exist in central Tanzania, where very heterogeneous habitats may simultaneously satisfy the environmental requirements of all three species. The current study, conducted about 4 decades after the last major survey activities, has shown that changing livestock policies, unrestricted livestock movement and a continuous change in climatic/environmental conditions in Tanzania have brought about only limited changes in the distribution patterns of R. appendiculatus, R. pravus and the three Amblyomma species investigated. Whether this observation indicates a relative indifference of these ticks to environmental and/or climate changes allows room for speculation.  相似文献   

13.
Aim Increasing our understanding of the effects of the Last Glacial Maximum (LGM) and determining the location of refugia requires studies on widely distributed species with dense sampling of populations. We have reconstructed the biogeographic history of Clitarchus hookeri (White), a widespread species of New Zealand stick insect that exhibits geographic parthenogenesis, using phylogeographic analysis and ecological niche modelling. Location New Zealand. Methods We used DNA sequence data from the mitochondrial cytochrome c oxidase subunit I gene to reconstruct phylogenetic relationships among haplotypes from C. hookeri and two undescribed Clitarchus species. We also used distribution data from our own field surveys and museum records to reconstruct the geographic distribution of C. hookeri during the present and the LGM, using ecological niche modelling. Results The ecological niche models showed that the geographic distribution of C. hookeri has expanded dramatically since the LGM. Our model predicted large areas of suitable LGM habitat in upper North Island, and small patches along the east coast of South Island. The phylogeographic analysis shows that populations in the northern half of North Island contain much higher levels of genetic variation than those from southern North Island and South Island, and is congruent with the ecological niche model. The distribution of bisexual populations is also non-random, with males completely absent from South Island and very rare in southern North Island. Main conclusions During the LGM C. hookeri was most likely restricted to several refugia in upper North Island and one or more smaller refugia along the east coast of South Island. The unisexual populations predominate in post-glacial landscapes and are clearly favoured in the recolonization of such areas. Our study exemplifies the utility of integrating ecological niche modelling and phylogeographic analysis.  相似文献   

14.
The potential distribution of critically rare or endangered species is necessary to assess species conservation status and guide recovery plans. Habitat models based on remotely sensed geospatial data are increasingly used to predict the suitability of sites for rare and endangered species, but in rapidly changing landscapes, habitat evaluations must reflect temporal as well as spatial variation of environmental suitability in order to properly inform management. We used field measurements of species occurrence, a 22-yr time series of satellite images, and the Maximum Entropy modeling approach (Maxent) to monitor spatio-temporal variation in habitat suitability of an endangered butterfly that uses riparian wetlands modified by beaver activity. We modeled the niche of the St. Francis' satyr Neonympha mitchellii francisci in an environment of remotely sensed metrics and projected the niche model over space and time to evaluate habitat dynamics and target sites for reintroduction efforts. Suitable habitat for the subspecies is currently distributed across the study area; however, most of the suitable area is unoccupied, and patches of the most suitable habitat have shifted over time in response to beaver activity and subsequent wetland succession, suggesting a negative interaction between dispersal limitation and landscape dynamics. Landcover changes complicate the recovery of critically threatened species such as N. m. francisci , but habitat monitoring over time can improve recovery plans, offer adaptive management strategies, and provide more exact criteria for species status assignment. Spatio-temporal extensions of the niche/habitat concept are made possible by long-term archives of remotely sensed data, and will likely prove most useful in rapidly changing landscapes.  相似文献   

15.
In this study, multivariate spatial clustering on monthly normalized difference vegetation index (NDVI) maps is used to classify ecological regions over the western Palaearctic. This classification is then used to delineate the distribution and climate preferences of populations (clades) of the tick Ixodes ricinus L. (Acari: Ixodidae) from a geographically extensive dataset of tick records and a gridded 2.5-km resolution climate dataset. Using monthly layers of the NDVI, regions of similar ecological attributes were defined and nine populations with significant differences in critical climate parameters (P< 0.005) were detected. Grouping of tick records according to other categories, such as political divisions, a 4 degrees x 4 degrees grid overlying the study area, or the CORINE) and USGS) vegetation classification schemes did not provided significantly separated populations (P = 0.094-0.304). Factor analysis and hierarchical tree clustering provided an ecological overview of these tick clades: two Mediterranean and one Scandinavian (western) clades are clearly separated from a node that includes clades of different parts of central Europe and the British Isles, with contrasting affinities between the different clades. The capture records of these ecologically separated clades produce a clear bias when bioclimate envelope modelling is applied to the mapping of habitat suitability for the tick in the western Palaearctic. The best-performing methods (Cohen's kappa = 0.834-0.912) use partial models developed with data from each ecoregion, which are then overlapped over the region of study. It is concluded that the use of ecologically derived ecoregions is an objective step in assessing the presence of ecologically different clades, and provides a guide in the development of data partitioning for habitat suitability modelling.  相似文献   

16.
We used mitochondrial DNA sequence comparisons to assess range-wide population structure and historical patterns of differentiation among populations of the bog turtle (Glyptemys muhlenbergii). This species is one of North America’s smallest and most endangered pond turtles, and is currently found in three largely disjunct groups of populations: in the southern U.S., in the northeast, and in the Finger Lakes and Lake Ontario Plains region of western and central New York State. All the New York sites and most of the northeastern sites were glaciated during the Pleistocene. We surveyed 2793 bases pairs of mitochondrial DNA spanning three genes (cytb, nd4, and d-loop) in 41 individuals from 21 populations throughout most of the bog turtle’s distribution. We found surprisingly low levels of divergence among populations, even in southern populations that have been hypothesized as refugia during times of climate change. Our data suggest populations of bog turtle’s suffered a bottleneck, followed by a rapid post-Pleistocene expansion into northern segments of the species’ range. We discuss historical changes in habitat availability and climate that may have influenced the historical deployment of lineages in this species, and possible life history traits and habitat dynamics that might also contribute to the overall low genetic diversity across its range.  相似文献   

17.
Understanding the factors determining genetic diversity and structure in peripheral populations is a long‐standing goal of evolutionary biogeography, yet little empirical information is available for tropical species. In this study, we combine information from nuclear microsatellite markers and niche modelling to analyse the factors structuring genetic variation across the southernmost populations of the tropical oak Quercus segoviensis. First, we tested the hypothesis that genetic variability decreases with population isolation and increases with local habitat suitability and stability since the Last Glacial Maximum (LGM). Second, we employed a recently developed multiple matrix regression with randomisation (MMRR) approach to study the factors associated with genetic divergence among the studied populations and test the relative contribution of environmental and geographic isolation to contemporary patterns of genetic differentiation. We found that genetic diversity was negatively correlated with average genetic differentiation with other populations, indicating that isolation and limited gene flow have contributed to erode genetic variability in some populations. Considering the relatively small size of the study area (<120 km), analyses of genetic structure indicate a remarkable inter‐population genetic differentiation. Environmental dissimilarity and differences in current and past climate niche suitability and their additive effects were not associated with genetic differentiation after controlling for geographic distance, indicating that local climate does not contribute to explain spatial patterns of genetic structure. Overall, our data indicate that geographic isolation, but not current or past climate, is the main factor determining contemporary patterns of genetic diversity and structure within the southernmost peripheral populations of this tropical oak.  相似文献   

18.
The Red-Claw crayfish, Cherax quadricarinatus von Martens, is native to freshwater habitats of northern Australia and Papua New Guinea. Owing to its large size and suitability for aquaculture, C. quadricarinatus has been widely translocated around the world. Unfortunately, C. quadricarinatus is also recognised as invasive, having already established feral populations in South Africa, Mexico, Jamaica and Puerto Rico. The hardiness and conspicuous colouration of C. quadricarinatus has also made it popular in the aquarium trade worldwide, including Singapore. Here, we report the establishment of feral populations of C. quadricarinatus in the water supply catchments of Singapore.  相似文献   

19.
Primate conservation requires a better knowledge of the distributions and statuses of populations in both large areas of habitat and in areas for which we currently have no information. We focused on spider monkeys (Ateles geoffroyi) and howler monkeys (Alouatta palliata) in the state of Oaxaca, Mexico. This Mexican state has protected large tracts of forest, and has historical records for both primates, although very little is known about them. To update our knowledge of the distributions of these primates and identify potential areas in which they are present, we modeled their geographic distributions by characterizing their ecological niches using the genetic algorithm for rule-set production (GARP), performed interviews and carried out field surveys. The predicted distributions, surveys and interviews indicate that the distributions of these primates are restricted to northeastern Oaxaca. The results suggest that spider monkeys occupy a wider area and elevational range than howler monkeys. Throughout that range there is a wide variety of suitable habitats for these primates. Most of the sites where monkeys were recorded in the field are not officially protected and there was evidence of hunting and habitat destruction. It is important to improve protection, economic alternatives and environmental education as we move towards an integral solution for the conservation of these species. Validation of the GARP model was done for A. geoffroyi, since we had obtained enough field data for this species; this validation indicated that the predicted distribution of the species was statistically better than expected by chance. Hence, ecological niche modeling is a useful approach when performing an initial assessment to identify distribution patterns, detecting suitable areas for future exploration, and for conservation planning. Our findings provide an improved basis for primate conservation and productive fieldwork in Oaxaca.  相似文献   

20.
Spatial distribution and habitat selection are integral to the study of animal ecology. Habitat selection may optimize the fitness of individuals. Hutchinsonian niche theory posits the fundamental niche of species would support the persistence or growth of populations. Although niche‐based species distribution models (SDMs) and habitat suitability models (HSMs) such as maximum entropy (Maxent) have demonstrated fair to excellent predictive power, few studies have linked the prediction of HSMs to demographic rates. We aimed to test the prediction of Hutchinsonian niche theory that habitat suitability (i.e., likelihood of occurrence) would be positively related to survival of American beaver (Castor canadensis), a North American semi‐aquatic, herbivorous, habitat generalist. We also tested the prediction of ideal free distribution that animal fitness, or its surrogate, is independent of habitat suitability at the equilibrium. We estimated beaver monthly survival probability using the Barker model and radio telemetry data collected in northern Alabama, United States from January 2011 to April 2012. A habitat suitability map was generated with Maxent for the entire study site using landscape variables derived from the 2011 National Land Cover Database (30‐m resolution). We found an inverse relationship between habitat suitability index and beaver survival, contradicting the predictions of niche theory and ideal free distribution. Furthermore, four landscape variables selected by American beaver did not predict survival. The beaver population on our study site has been established for 20 or more years and, subsequently, may be approaching or have reached the carrying capacity. Maxent‐predicted increases in habitat use and subsequent intraspecific competition may have reduced beaver survival. Habitat suitability‐fitness relationships may be complex and, in part, contingent upon local animal abundance. Future studies of mechanistic SDMs incorporating local abundance and demographic rates are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号