首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A number of selected fermentative bacteria were surveyed for the presence of the phosphoenolpyruvate:glucose phosphotransferase system, with particular attention to those organisms which ferment glucose by pathways other than the Embden-Meyerhof-Parnas pathway. The phosphoenolpyruvate:glusoe phosphotransferase system was found in all homofermentative lactic acid bacteria tested that ferment glucose via the Embden-Meyerhof-Parnas pathway, but in none of a group of heterofermentative species of Lactobacillus or Leuconostoc, which ferment glucose via the phosphoketolase pathway. A phosphoenolpyruvate:glucose phosphotransferase system was also absent in Zymomonas mobilis, which ferments glucose via an anaerobic Entner-Doudoroff pathway. It thus appears that the phosphotransferase mode of glucose transport is limited to bacteria with the Embden-Meyerhof-Parnas mode of glucose fermentation.  相似文献   

3.
4.
Growth of Streptococcus mutans Ingbritt in continuous culture (pH 7.0, dilution rate of 0.1 h-1) at medium glucose concentrations above 2.6 mM resulted in repression of the sugar-specific membrane components, enzyme IIGlc (EIIGlc) and EIIMan, of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). In one experiment, significant repression (27-fold) was observed with 73 mM glucose when the glycolytic capacity of the cells was reduced by only 2-fold and when the culture was still glucose limited. In a more comprehensive experiment in which cells were grown in continuous culture at eight glucose concentrations from 2.6 to 304 mM, in addition to repression of specific EII activities for glucose, mannose, 2-deoxyglucose, and fructose, synthesis of the general protein, EI, was repressed at all glucose levels above 2.6 mM to a maximum of 4-fold at 304 mM glucose when the culture was growing with excess glucose (i.e., nitrogen limited). The other PTS general protein, HPr, was less sensitive to the exogenous glucose level but was nevertheless repressed fourfold under glucose-excess conditions. The Km for glucose for EIIGlc increased from 0.22 mM during growth at 3.6 mM glucose (glucose limited) to 0.48 mM at 271 mM glucose (glucose excess). The shift from heterofermentation to homofermentation during growth with increasing glucose levels suggests the involvement of glycolytic intermediates, ATP, or another high-energy phosphate metabolite in regulation of the synthesis of the PTS components in S. mutans.  相似文献   

5.
Cells of a glucose-PTS (phosphoenolpyruvate:carbohydrate phosphotransferase system)-negative mutant of Vibrio parahaemolyticus transport D-glucose in the presence of Na+. Maximum stimulation of D-glucose transport was observed at 40 mM NaCl, and Na+ could be replaced partially with Li+. Addition of D-glucose to the cell suspension under anaerobic conditions elicited Na+ uptake. Thus, we conclude that glucose is transported by a Na+/glucose symport mechanism. Calculated Vmax and Km values for the Na(+)-dependent D-glucose transport were 15 nmol/min/mg of protein and 0.57 mM, respectively, when NaCl was added at 40 mM. Na+ lowered the Km value without affecting the Vmax value. D-Glucose was the best substrate for this transport system, followed by galactose, alpha-D-fucose, and methyl-alpha-glucoside, judging from the inhibition pattern of the glucose transport. D-Glucose itself partly repressed the transport system when cells were grown in its presence.  相似文献   

6.
7.
The overall stereochemical course of the reactions leading to the phosphorylation of methyl alpha-D-glucopyranoside by the glucose-specific enzyme II (enzyme IIGlc) of the Escherichia coli phosphotransferase system has been investigated. With [(R)-16O,17O,18O]phosphoenolpyruvate as the phosphoryl donor and in the presence of enzyme I, HPr, and enzyme IIIGlc of the phosphotransferase system, membranes from E. coli containing enzyme IIGlc catalyzed the formation of methyl alpha-D-glucopyranoside 6-phosphate with overall inversion of the configuration at phosphorus (with respect to phosphoenolpyruvate). It has previously been shown that sequential covalent transfer of the phosphoryl group of phosphoenolpyruvate to enzyme I, to HPr, and to enzyme IIIGlc occurs before the final transfer from phospho-enzyme IIIGlc to the sugar, catalyzed by enzyme IIGlc. Because overall inversion of the configuration of the chiral phospho group of phosphoenolpyruvate implies an odd number of transfer steps, the phospho group has been transferred at least five times, and transfer from phospho-enzyme IIIGlc to the sugar must occur in two steps (or a multiple thereof). On the basis that no membrane protein other than enzyme IIGlc is directly involved in the final phospho transfer steps, our results imply that a covalent phospho-enzyme IIGlc is an intermediate during transport and phosphorylation of glucose by the E. coli phosphotransferase system.  相似文献   

8.
Enzyme IIIGlc of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) of Salmonella typhimurium can occur in two forms: phosphorylated and nonphosphorylated. Phosphorylated IIIGlc (P-IIIGlc) has a slightly lower mobility during sodium dodecyl sulphate/polyacrylamide gel electrophoresis than IIIGlc. In bacterial extracts both phosphoenolpyruvate (the physiological phosphoryl donor of the PTS) as well as ATP can phosphorylate IIIGlc. The ATP-catalyzed reaction is dependent on phosphoenolpyruvate synthase, however, and is due to prior conversion of ATP to phosphoenolpyruvate. The phosphoryl group of phosphorylated IIIGlc is hydrolysed after boiling in sodium dodecyl sulfate but phosphorylated IIIGlc can be discriminated from IIIGlc if treated with this detergent at room temperature. We have used the different mobilities of IIIGlc and P-IIIGlc to estimate the proportion of these two forms in intact cells. Wild-type cells contain predominantly P-IIIGlc in the absence of PTS sugars. In an S. typhimurium mutant containing a leaky ptsI17 mutation (0.1% enzyme I activity remaining) both forms of IIIGlc occur in approximately equal amounts. Addition of PTS sugars such as glucose results, both in wild-type and mutant, in a dephosphorylation of P-IIIGlc. This correlates well with the observed inhibition of non-PTS uptake systems by PTS sugars via nonphosphorylated IIIGlc.  相似文献   

9.
We analyzed the role of diffusion and cell size on the flux control properties of the glucose-PTS of Escherichia coli, in silicon cells under various metabolic conditions. To our surprise, the influence of the concentration of phosphoryl-donor PEP on the distribution of control was small. We found for cells of bacterial size that PTS-flux control was mainly located in processes taking place in the membrane and that diffusion hardly controlled the flux (< 2.8 %). Enlargement of the cells shifted the control from membrane to cytoplasm and from process rates to diffusion rates, the latter now having a total control of about 38 %. In the presence of glucose, nearly all diffusion flux control resided in the component that links the cytoplasmic processes to those in the membrane.  相似文献   

10.
11.
12.
Screening with methyl-alpha-d-glucoside was an efficient procedure for enrichment of mutants lacking the glucose transport system and of the pleiotropic mutants lacking the phosphoenolpyruvate-dependent phosphotransferase system in Vibrio parahaemolyticus.  相似文献   

13.
In most streptococci, glucose is transported by the phosphoenolpyruvate (PEP):glucose/mannose phosphotransferase system (PTS) via HPr and IIAB(Man), two proteins involved in regulatory mechanisms. While most strains of Streptococcus thermophilus do not or poorly metabolize glucose, compelling evidence suggests that S. thermophilus possesses the genes that encode the glucose/mannose general and specific PTS proteins. The purposes of this study were to determine (i) whether these PTS genes are expressed, (ii) whether the PTS proteins encoded by these genes are able to transfer a phosphate group from PEP to glucose/mannose PTS substrates, and (iii) whether these proteins catalyze sugar transport. The pts operon is made up of the genes encoding HPr (ptsH) and enzyme I (EI) (ptsI), which are transcribed into a 0.6-kb ptsH mRNA and a 2.3-kb ptsHI mRNA. The specific glucose/mannose PTS proteins, IIAB(Man), IIC(Man), IID(Man), and the ManO protein, are encoded by manL, manM, manN, and manO, respectively, which make up the man operon. The man operon is transcribed into a single 3.5-kb mRNA. To assess the phosphotransfer competence of these PTS proteins, in vitro PEP-dependent phosphorylation experiments were conducted with purified HPr, EI, and IIAB(Man) as well as membrane fragments containing IIC(Man) and IID(Man). These PTS components efficiently transferred a phosphate group from PEP to glucose, mannose, 2-deoxyglucose, and (to a lesser extent) fructose, which are common streptococcal glucose/mannose PTS substrates. Whole cells were unable to catalyze the uptake of mannose and 2-deoxyglucose, demonstrating the inability of the S. thermophilus PTS proteins to operate as a proficient transport system. This inability to transport mannose and 2-deoxyglucose may be due to a defective IIC domain. We propose that in S. thermophilus, the general and specific glucose/mannose PTS proteins are not involved in glucose transport but might have regulatory functions associated with the phosphotransfer properties of HPr and IIAB(Man).  相似文献   

14.
15.
Mycoplasma pneumoniae is a pathogenic bacterium that is highly adapted to life on mucosal surfaces. This adaptation is reflected by the very compact genome and the small number of regulatory proteins. However, M. pneumoniae possesses the HPr kinase/phosphorylase (HPrK/P), the key regulator of carbon metabolism in the Firmicutes. In contrast to the enzymes of other bacteria, the HPrK/P of M. pneumoniae is already active at very low ATP concentrations, suggesting a different mode of regulation. In this work, we studied the ability of M. pneumoniae to utilize different carbohydrates and their effects on the activity of the different phosphotransferase system (PTS) components. Glucose served as the best carbon source, with a generation time of about 30 h. Fructose and glycerol were also used but at lower rates and with lower yields. In contrast, M. pneumoniae is unable to use mannitol even though the bacterium is apparently equipped with all the genes required for mannitol catabolism. This observation is probably a reflection of the continuing and ongoing reduction of the M. pneumoniae genome. The general enzymatic and regulatory components of the PTS, i.e., enzyme I, HPr, and HPrK/P, were present under all growth conditions tested in this study. However, HPrK/P activity is strongly increased if the medium contains glycerol. Thus, the control of HPrK/P in vivo differs strongly between M. pneumoniae and the other Firmicutes. This difference may relate to the specific conditions on lipid-rich cell surfaces.  相似文献   

16.
A phosphoenolpyruvate: dihydroxyacetone phosphotransferase was induced in Escherichia coli grown on dihydroxyacetone as sole carbon source or in its presence. This is the first example of a triose which can be acted upon by the membrane complex to provide a central intermediate in glycolysis. The presence of this system explains the ability of a mutant, in which the ATP-dependent glycerol kinase is genetically replaced by a glycerol: NAD 2-oxidoreductase, to grow on glycerol.  相似文献   

17.
Regulatory aspects of the bacterial phosphoenolpyruvate (PEP):sugar phosphotransferase system (PTS) are reviewed. The structure and conformational stability of the first protein (enzyme I) of the PTS, as well as the requirement for enzyme I to dimerize for autophosphorylation by PEP in the presence of MgCl2 are discussed.  相似文献   

18.
19.
Two membrane filter (MF) and two most-probable-number methods for enumerating Vibrio parahaemolyticus were compared. The MF methods used elevated-temperature incubations (41 and 42 degrees C) and were more specific than the most-probable-number methods (conducted at 35 degrees C). The MF method with a hydrophobic grid and a repair step was most effective.  相似文献   

20.
The kinetic parameters in vitro of the components of the phosphoenolpyruvate:glycose phosphotransferase system (PTS) in enteric bacteria were collected. To address the issue of whether the behavior in vivo of the PTS can be understood in terms of these enzyme kinetics, a detailed kinetic model was constructed. Each overall phosphotransfer reaction was separated into two elementary reactions, the first entailing association of the phosphoryl donor and acceptor into a complex and the second entailing dissociation of the complex into dephosphorylated donor and phosphorylated acceptor. Literature data on the K(m) values and association constants of PTS proteins for their substrates, as well as equilibrium and rate constants for the overall phosphotransfer reactions, were related to the rate constants of the elementary steps in a set of equations; the rate constants could be calculated by solving these equations simultaneously. No kinetic parameters were fitted. As calculated by the model, the kinetic parameter values in vitro could describe experimental results in vivo when varying each of the PTS protein concentrations individually while keeping the other protein concentrations constant. Using the same kinetic constants, but adjusting the protein concentrations in the model to those present in cell-free extracts, the model could reproduce experiments in vitro analyzing the dependence of the flux on the total PTS protein concentration. For modeling conditions in vivo it was crucial that the PTS protein concentrations be implemented at their high in vivo values. The model suggests a new interpretation of results hitherto not understood; in vivo, the major fraction of the PTS proteins may exist as complexes with other PTS proteins or boundary metabolites, whereas in vitro, the fraction of complexed proteins is much smaller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号