首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Expression of catabolite-sensitive operons in mutants devoid of HPr (a component of the glucose transport system) is severely repressed. ptsH mutants do not utilize substrates of the phosphoenolpyruvate: carbohydrate system (PTS) and many other sugars. Analysis of mutations suppressing the effect of the delta ptsH mutation revealed a new class of reversions which restore the growth of bacteria on different substrates. This mutation (named ptsS) intensifies the growth rate of ptsH mutants and increases the differential rate of beta-galactosidase production. ptsS mutation was mapped in the region of ptsF gene (coding for the fructose specific enzyme II of the PTS) on the 46th min. of the E. coli chromosome map. The effect of the ptsS mutation on the expression of catabolite-sensitive operons manifests only in the presence of the intact enzyme I of the PTS.  相似文献   

3.
In this review, we describe the phosphotransferase system (PTS) of Corynebacterium glutamicum and discuss genes for putative global carbon regulation associated with the PTS. C. glutamicum ATCC 13032 has PTS genes encoding the general phosphotransferases enzyme I, HPr and four enzyme II permeases, specific for glucose, fructose, sucrose and one yet unknown substrate. C. gluamicum has a peculiar sugar transport system involving fructose efflux after hydrolyzing sucrose transported via sucrose EII. Also, in addition to their primary PTS, fructose and glucose are each transported by a second transporter, glucose EII and a non-PTS permease, respectively. Interestingly, C. glutamicum does not show any preference for glucose, and thus co-metabolizes glucose with other sugars or organic acids. Studies on PTS-mediated sugar uptake and its related regulation in C. glutamicum are important because the production yield of lysine and cell growth are dependent on the PTS sugars used as substrates for fermentation. In many bacteria, the PTS is also involved in several regulatory processes. However, the detailed molecular mechanism of global carbon regulation associated with the PTS in this organism has not yet been revealed.  相似文献   

4.
Patterns of chemotaxis by Salmonella typhimurium strain LT-2 to l-amino acids and to several sugars were quantitated by the Adler capillary procedure. Competition experiments indicated that LT-2 possesses three predominant receptors, or interacting sets of receptors, for amino acids. These were termed the aspartate, serine, and alanine classes, respectively. Studies with strains carrying point and deletion mutations affecting components of the phosphoenolpyruvate: glycose phosphotransferase system (PTS) made unlikely a role in primary reception of d-glucose by the three soluble PTS components, namely HPr, enzyme I, and factor III. A ptsG mutant defective in membrane-bound enzyme IIB' of the high-affinity glucose transport system was shown to exhibit normal chemotaxis providing pleiotropic effects of the mutation were eliminated by its genotypic combination with other pts mutations or, phenotypically, by addition of cyclic AMP and substrate. A correlation was demonstrated between chemotaxis to glucose and activity of the low-affinity glucose transport complex, membrane-bound enzymes IIB:IIA, and an enzyme IIB:IIA mutant was shown to have a preponderant defect in chemotaxis to glucose and mannose. Of four systems capable of galactose transport, only the beta-methylgalactoside transport system was implicated in chemotaxis to galactose. Some properties of a mutant possibly defective in processing of signals for chemotaxis to sugars is described.  相似文献   

5.
6.
Transport of trehalose in Salmonella typhimurium.   总被引:10,自引:4,他引:6       下载免费PDF全文
We have studied trehalose uptake in Salmonella typhimurium and the possible involvement of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) in this process. Two transport systems could recognize and transport trehalose, the mannose PTS and the galactose permease. Uptake of trehalose via the latter system required that it be expressed constitutively (due to a galR or galC mutation). Introduction of a ptsM mutation, resulting in a defective IIMan/IIIMan system, in S. typhimurium strains that grew on trehalose abolished growth on trehalose. A ptsG mutation, eliminating IIGlc of the glucose PTS, had no effect. In contrast, a crr mutation that resulted in the absence of IIIGlc of the glucose PTS prevented growth on trehalose. The inability of crr and also cya mutants to grow on trehalose was due to lowered intracellular cyclic AMP synthesis, since addition of extracellular cyclic AMP restored growth. Subsequent trehalose metabolism could be via a trehalose phosphate hydrolase, if trehalose phosphate was formed via the PTS, or trehalase. Trehalose-grown cells contained trehalase activity, but we could not detect phosphoenolpyruvate-dependent phosphorylation of trehalose in toluenized cells.  相似文献   

7.
Glucose-negative mutants of Mycoplasma capricolum were selected for growth on fructose in the presence of the toxic glucose analog alpha-methyl-D-glucopyranoside. The mutants are defective in the phosphoenolpyruvate:sugar phosphotransferase system for glucose. One mutant, pts-4, was studied in detail. It lacks the glucose-specific, membrane-bound enzyme II, IIGlc, as well as the general, low-molecular-weight, phosphocarrier protein, HPr. In place of the latter, however, it has a fructose-specific protein, HPrFru. Consistent with these changes, the mutant lost the ability to grow on glucosamine and maltose but retained its ability to grow on sucrose. In the glucose-negative mutant, glucose did not regulate the intracellular concentration of cyclic AMP. The intracellular concentration of cyclic AMP in M. capricolum is regulated by the presence of metabolizable sugars. In the wild-type, both glucose and fructose reduced the intracellular concentration of cyclic AMP; however, in the glucose-negative mutant, glucose no longer regulated the intracellular level of cyclic AMP.  相似文献   

8.
The phosphotransferase system of Staphylococcus aureus was characterized. Mutants defective in enzyme I and heat-stable (HPr) protein as well as in the two components specific to lactose accumulation, factor III and enzyme II, were isolated. Colorimetric assays for each of the components are presented based on the formation of o-nitrophenyl-beta-d-galactoside-6-phosphate by the system and its hydrolysis by the staphylococcal 6-phospho-beta-galactosidase. The components were partially purified and their molecular weights were estimated: enzyme I, 100,000 +/- 15%; HPr, 10,000 +/- 15%; factor III, 30,000 +/- 15%; 6-phospho-beta-galactosidase, 45,000. Enzyme II is a membrane-bound protein.  相似文献   

9.
Changes in intracellular cAMP concentration play important roles in Haemophilus influenzae , regulating both sugar utilization and competence for natural transformation. In enteric bacteria, cAMP levels are controlled by the phosphoenolpyruvate:glycose phosphotransferase system (PTS) in response to changes in availability of the preferred sugars it transports. We have demonstrated the existence of a simple PTS in H. influenzae by several methods. We have cloned the H. influenzae ptsI gene, encoding PTS Enzyme I; genome analysis locates it in a pts operon structurally homologous to those of enteric bacteria. In vitro phosphorylation assays confirmed the presence of functional PTS components. A ptsI null mutation reduced fructose uptake to 1% of the wild-type rate, and abolished fructose fermentation even when exogenous cAMP was provided. The ptsI mutation also prevented fermentation of ribose and galactose, but utilization of these cAMP-dependent sugars was restored by addition of cAMP. In wild-type cells the non-metabolizable fructose analogue xylitol prevented fermentation of these sugars, confirming that the fructose PTS regulates cAMP levels. Development of competence under standard inducing conditions was reduced 250-fold by the ptsI mutation, unless cells were provided with exogenous cAMP. Competence is thus shown to be under direct nutritional control by a fructose-specific PTS.  相似文献   

10.
11.
In Salmonella typhimurium, glucose, mannose, and fructose are normally transported and phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system. We have investigated the transport of these sugars and their non-metabolizable analogs in mutant strains lacking the phospho-carrier proteins of the phosphoenolpyruvate:sugar phosphotransferase system, the enzymes I and HPr, to determine whether the sugar-specific, membrane-bound components of the phosphonenolpyruvate: sugar phosphotransferase system, the enzymes II, can catalyze the uptake of these sugars in the absence of phosphorylation. This process does not occur. We have also isolated mutant strains which lack enzyme I and HPr, but have regained the ability to grow on mannose or fructose. These mutants contained elevated levels of mannokinase (fructokinase). In addition, growth on mannose required constitutive synthesis of the galactose permease. When strains were constructed which lacked the galactose permease, they were unable to grow even on high concentrations of mannose, although elevated levels of mannokinase (fructokinase) were present. These results substantiate the conclusion that the enzymes II of the phosphoenolpyruvate:sugar phosphotransferase system are unable to carry out facilitated diffusion.  相似文献   

12.
The high-GC Gram-positive actinomycete Corynebacterium glutamicum is commercially exploited as a producer of amino acids that are used as animal feed additives and flavor enhancers. Despite its beneficial role, carbon metabolism and its possible influence on amino acid metabolism is poorly understood. We have addressed this issue by analyzing the phosphotransferase system (PTS), which in many bacteria controls the flux of nutrients and therefore regulates carbon metabolism. The general PTS phosphotransferases enzyme I (EI) and HPr were characterized by demonstration of PEP-dependent phosphotransferase activity. An EI mutant exhibited a pleiotropic negative phenotype in carbon utilization. The role of the PTS as a major sugar uptake system was further demonstrated by the finding that glucose and fructose negative mutants were deficient in the respective enzyme II PTS permease activities. These carbon sources also caused repression of glutamate uptake, which suggests an involvement of the PTS in carbon regulation. The observation that no HPr kinase/phosphatase could be detected suggests that the mechanism of carbon regulation in C. glutamicum is different to the one found in low-GC Gram-positive bacteria.  相似文献   

13.
The initial reactions involved in the catabolism of fructose in Pseudomonas aeruginosa include the participation of a phosphoenolpyruvate:fructose 1-phosphotransferase system (F-PTS). Fractionation of crude extracts of fructose-grown cells revealed that both membrane-associated and soluble components were essential for F-PTS activity. Further resolution of the soluble fraction by both size exclusion and ion-exchange chromatography revealed the presence of only one component, functionally analogous to enzyme I. Enzyme I exhibited a relative molecular weight of 72,000, catalyzed the pyruvate-stimulated hydrolysis of phosphoenolpyruvate to pyruvate, and mediated the phosphorylation of fructose when combined with a source of enzyme II (washed membranes). No evidence for the requirement of a phosphate carrier protein, such as HPr, could be demonstrated. Thus, the F-PTS requires a minimum of two components, a soluble enzyme I and a membrane-associated enzyme II complex, and both were shown to be inducible. Reconstituted F-PTS activity was specific for phosphoenolpyruvate as a phosphate donor (Km, approximately -0.6 mM) and fructose as the sugar substrate (Km, approximately 18 microM). Components of the Pseudomonas F-PTS did not restore activity to extracts of deletion mutants of Salmonella typhimurium deficient in individual proteins of the PTS or to fractionated membrane and soluble components of the F-PTS of Escherichia coli. Similarly, membrane and soluble components of E. coli and S. typhimurium would not cross-complement the F-PTS components from P. aeruginosa.  相似文献   

14.
We have shown previously that the glucose PTS (phosphotransferase system) permease enzyme II of Spiroplasma citri is split into two distinct polypeptides, which are encoded by two separate genes, crr and ptsG. A S. citri mutant was obtained by disruption of ptsG through homologous recombination and was proved unable to import glucose. The ptsG mutant (GII3-glc1) was transmitted to periwinkle (Catharanthus roseus) plants through injection to the leaf-hopper vector. In contrast to the previously characterized fructose operon mutant GMT 553, which was found virtually nonpathogenic, the ptsG mutant GII3-glc1 induced severe symptoms similar to those induced by the wild-type strain GII-3. These results, indicating that fructose and glucose utilization were not equally involved in pathogenicity, were consistent with biochemical data showing that, in the presence of both sugars, S. citri used fructose preferentially. Proton nuclear magnetic resonance analyses of carbohydrates in plant extracts revealed the accumulation of soluble sugars, particularly glucose, in plants infected by S. citri GII-3 or GII3-glc1 but not in those infected by GMT 553. From these data, a hypothetical model was proposed to establish the relationship between fructose utilization by the spiroplasmas present in the phloem sieve tubes and glucose accumulation in the leaves of S. citri infected plants.  相似文献   

15.
Two glucose-phosphorylating enzymes, a hexokinase phosphorylating both glucose and fructose, and a glucose-specific glucokinase were electrophoretically separated in the methylotrophic yeastHansenula polymorpha. Hexokinase-negative mutants were isolated inH. polymorpha by using mutagenesis, selection and genetic crosses. Regulation of synthesis of the sugar-repressed alcohol oxidase, catalase and maltase was studied in different hexose kinase mutants. In the wild type and in mutants possessing either hexokinase or glucokinase, glucose repressed the synthesis of maltase, alcohol oxidase and catalase. Glucose repression of alcohol oxidase and catalase was abolished in mutants lacking both glucose-phosphorylating enzymes (i.e. in double kinase-negative mutants). Thus, glucose repression inH. polymorpha cells requires a glucose-phosphorylating enzyme, either hexokinase or glucokinase. The presence of fructose-phosphorylating hexokinase in the cell was specifically needed for fructose repression of alcohol oxidase, catalase and maltase. Hence, glucose or fructose has to be phosphorylated in order to cause repression of the synthesis of these enzymes inH. polymorpha suggesting that sugar repression in this yeast therefore relies on the catalytic activity of hexose kinases.  相似文献   

16.
Transport and phosphorylation of glucose via enzymes II-A/II-B and II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system are tightly coupled in Salmonella typhimurium. Mutant strains (pts) that lack the phosphorylating proteins of this system, enzyme I and HPr, are unable to transport or to grow on glucose. From ptsHI deletion strains of S. typhimurium, mutants were isolated that regained growth on and transport of glucose. Several lines of evidence suggest that these Glc+ mutants have an altered enzyme II-BGlc as follows. (i) Insertion of a ptsG::Tn10 mutation (resulting in a defective II-BGlc) abolished growth on and transport of glucose in these Glc+ strains. Introduction of a ptsM mutation, on the other hand, which abolishes II-A/II-B activity, had no effect. (ii) Methyl alpha-glucoside transport and phosphorylation (specific for II-BGlc) was lowered or absent in ptsH+,I+ transductants of these Glc+ strains. Transport and phosphorylation of other phosphoenolpyurate:sugar phosphotransferase system sugars were normal. (iii) Membranes isolated from these Glc+ mutants were unable to catalyze transphosphorylation of methyl alpha-glucoside by glucose 6-phosphate, but transphosphorylation of mannose by glucose 6-phosphate was normal. (iv) The mutation was in the ptsG gene or closely linked to it. We conclude that the altered enzyme II-BGlc has acquired the capacity to transport glucose in the absence of phosphoenolpyruvate:sugar phosphotransferase system-mediated phosphorylation. However, the affinity for glucose decreased at least 1,000-fold as compared to the wild-type strain. At the same time the mutated enzyme II-BGlc lost the ability to catalyze the phosphorylation of its substrates via IIIGlc.  相似文献   

17.
We have reported previously that the phosphoenolpyruvate:mannose phosphotransferase system (mannose PTS) of Streptococcus salivarius, consisting of an Enzyme II mannose (EIIman) and two forms of Enzyme III mannose (IIIman) with Mr values of 38,900 and 35,200, respectively, concomitantly transports and phosphorylates mannose, as well as glucose and fructose. In this paper, we report the presence, in S. salivarius, of alternative specific fructose and glucose PTSs encoded by inducible and cryptic genes, respectively. Protein phosphorylation experiments conducted with [32P]phosphoenolpyruvate have allowed us to identify by SDS-PAGE and autoradiography the EII fructose (EIIfru) (Mr 57,500) and the EII glucose (EIIglc) (Mr 58,700). No proteins corresponding to IIIfru or IIIglc could be detected. EIIfru phosphorylated fructose on the C-1 position rather than, as with the constitutive mannose PTS, on the C-6 position. Growth on fructose resulted in the induction of EIIfru as well as an increase of 1-phosphofructokinase activity. Nevertheless, the genes encoding these proteins were independently regulated. Studies carried out with spontaneous mutants lacking the low-molecular-mass form of IIIman (mutants A37, G29 and B31) showed that EIIfru was expressed in glucose-grown cells of strains G29 and B31, but not in strain A37, whereas the cryptic gene encoding EIIglc was activated in all three mutant strains. The results obtained with the mutants suggest that the three spontaneous mutants were not all mutated on the gene encoding IIIman although all of them lacked IIIman.  相似文献   

18.
Bovine intestine alkaline phosphatase (BIALP) is widely used as a signaling enzyme in sensitive assays such as enzyme immunoassay. In this study, we evaluated the effects of sugars on the kinetic stability of BIALP in the hydrolysis of p-nitrophenylphosphate (pNPP). The temperatures reducing initial activity by 50% in a 30-min incubation, T(50), of BIALP with 1.0 M disaccharide (sucrose and trehalose) or 2.0 M monosaccharide (glucose and fructose) were 55.0-55.5 °C, 4.7-5.2 °C higher than without sugar (50.3±0.1 °C). The T(50) of BIALP increased to 58.4±0.3 °C when the trehalose concentration was from 1.0 to 1.5 M, but did not change when the glucose concentration was from 2.0 to 3.0 M. Thermodynamic analysis revealed that the stabilization of BIALP by sugars was driven by the increase in the enthalpy change of activation for thermal inactivation of BIALP. No sugars affected the k(cat) of BIALP in the hydrolysis of pNPP. These results suggest that not only trehalose, which is considered the most effective stabilizer of enzymes, but also sucrose, glucose, and fructose can be used as stabilizers of BIALP.  相似文献   

19.
In gram-positive bacteria, the HPr protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) can be phosphorylated on a histidine residue at position 15 (His(15)) by enzyme I (EI) of the PTS and on a serine residue at position 46 (Ser(46)) by an ATP-dependent protein kinase (His approximately P and Ser-P, respectively). We have isolated from Streptococcus salivarius ATCC 25975, by independent selection from separate cultures, two spontaneous mutants (Ga3.78 and Ga3.14) that possess a missense mutation in ptsH (the gene encoding HPr) replacing the methionine at position 48 by a valine. The mutation did not prevent the phosphorylation of HPr at His(15) by EI nor the phosphorylation at Ser(46) by the ATP-dependent HPr kinase. The levels of HPr(Ser-P) in glucose-grown cells of the parental and mutant Ga3.78 were virtually the same. However, mutant cells growing on glucose produced two- to threefold less HPr(Ser-P)(His approximately P) than the wild-type strain, while the levels of free HPr and HPr(His approximately P) were increased 18- and 3-fold, respectively. The mutants grew as well as the wild-type strain on PTS sugars (glucose, fructose, and mannose) and on the non-PTS sugars lactose and melibiose. However, the growth rate of both mutants on galactose, also a non-PTS sugar, decreased rapidly with time. The M48V substitution had only a minor effect on the repression of alpha-galactosidase, beta-galactosidase, and galactokinase by glucose, but this mutation abolished diauxie by rendering cells unable to prevent the catabolism of a non-PTS sugar (lactose, galactose, and melibiose) when glucose was available. The results suggested that the capacity of the wild-type cells to preferentially metabolize glucose over non-PTS sugars resulted mainly from inhibition of the catabolism of these secondary energy sources via a HPr-dependent mechanism. This mechanism was activated following glucose but not lactose metabolism, and it did not involve HPr(Ser-P) as the only regulatory molecule.  相似文献   

20.
Claus Schnarrenberger 《Planta》1990,181(2):249-255
When green leaves of spinach (Spinacia oleracea L.) were surveyed for the presence of hexokinases which utilize glucose, fructose and-or mannose as a substrate, four kinases could be distinguished by their order of elution during chromatography on diethylaminoethyl (DEAE)-cellulose: (i) a hexokinase I with a specificity for fructose, glucose, and mannose, (ii) a fructokinase I with a specificity for fructose, (iii) a hexokinase II with a specificity for glucose, fructose and mannose, and (iv) a fructokinase II with a specificity for fructose. Hexokinases I and II had high apparent Km values for fructose (8 and 15 mM, respectively) and medium or low apparent Km values for glucose (150 and 18 μM, respectively) and mannose (18 and 15 μM, respectively). Maximal velocities were highest with fructose, medium with glucose and lowest with mannose. That hexokinases I and II used several sugars as substrate was concluded (i) from their identical elution profiles during enzyme separation and (ii) because their activities with two or three sugars at a time was always lower than the sum of activities with one substrate, indicating competition of the sugars for the reaction with the enzymes. Fructokinases I and II were very specific for fructose (85 and 140 μM, respectively) and had only little, if any, activity with glucose or mannose. All kinases showed varying degrees of activity with nucleoside triphosphates other than ATP. In the presence of all three sugars, hexokinases I and II were considerably more active with ATP than with uridine-, cytidine-, and guanosine 5'-triphosphate (UTP, CTP, GTP) except that, in the presence of glucose, hexokinase I was almost as active with UTP as with ATP. In the presence of fructose, fructokinase I exhibited highest activity with GTP and a gradually decreasing level of activity with CTP, UTP, and ATP. The activities in the presence of the other two sugars were highest with ATP. Fructokinase II was most active with ATP and fructose and progressively less active with GTP, UTP, and CTP. Cell fractionation by isopycnic density-gradient centrifugation or differential centrifugation indicated that fructokinase II was associated with chloroplasts, hexokinase II with mitochondria, and the other two kinases with the non-particulate cell fraction. In green leaves of pea (Pisum sativum L.), only a hexokinase (II) and fructokinase (II) were present. Corn (Zea mays L.) leaves exhibited only very low hexokinase activity. Dedicated to Prof. Dr. Hans Mohr on the occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号