首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2H-NMR was used to probe the interaction of non-hydroxy fatty acid cerebroside and 2-hydroxy fatty acid cerebroside with the polar head group and with the acyl chains of dipalmitoylphosphatidylcholine in unsonicated bilayers. It is shown that the interior of the bilayer exhibits uniformly increasing orientational order as the concentration of both types of cerebroside increases, whereas the surface of the bilayer, as reflected by the head group motion, becomes disordered. The extent of the disorder at the surface is dependent upon the type and concentration of the cerebroside. These results are discussed in terms of hydrogen-bonding interactions.  相似文献   

2.
The reactivity of the acidic glycolipid cerebroside sulfate (CBS) with antibody was studied as a function of its lipid environment in vesicles and of its ceramide composition. The lipid environment was varied by using phosphatidylcholine of varying chain length with cholesterol in a phosphatidylcholine:cholesterol:cerebroside sulfate molar ratio to glycolipid of 1:0.75:0.1. The ceramide structure of CBS was varied by using synthetic forms containing palmitic acid, lignoceric acid, or the corresponding alpha-hydroxy fatty acids. Reactivity with antibody was determined by measuring complement-mediated lysis of the vesicles containing a spin-label marker, tempocholine chloride. The data were analyzed by a theoretical model which gives relative values for the dissociation constant and concentration of antibodies within the antiserum which are able to bind to the glycolipid. If the phosphatidylcholine chain length was increased, increasing the bilayer thickness, only a small population of high-affinity antibodies were able to bind to cerebroside sulfate, suggesting decreased surface exposure of the glycosyl head group. A larger population of lower affinity antibodies were able to bind to it in a shorter chain length phosphatidylcholine environment. However, if the chain length of the cerebroside sulfate was increased, it could be recognized by more antibodies of lower affinity than the short chain length form, suggesting that an increase in chain length of the glycolipid increased surface exposure. Hydroxylation of the fatty acid inhibited antibody binding; only a smaller population of higher affinity antibodies was able to bind to the hydroxy fatty acid forms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
13C- and 2H-NMR experiments were used to examine the phase behavior and dynamic structures of N-palmitoylgalactosylsphingosine (NPGS) (cerebroside) and cholesterol (CHOL) in binary mixtures. 13C spectra of 13C=O-labeled and 2H spectra of [7,7-2H2] chain-labeled NPGS as well as 3 alpha-2H1 CHOL indicate that cerebroside and CHOL are immiscible in binary mixtures at temperatures less than 40 degrees C. In contrast, at 40 degrees C < t < or = T(C) (NPGS), up to 50 mol% CHOL can be incorporated into melted cerebroside bilayers. In addition, 13C and 2H spectra of melted NPGS/CHOL bilayers show a temperature and cholesterol concentration dependence. An analysis of spectra obtained from the melted 13C=O NPGS bilayer phase suggests that the planar NH-C=O group assumes an orientation tilted 40 degrees-55 degrees down from the bilayer interface. The similarity between the orientation of the amide group relative to the bilayer interface in melted bilayers and in the crystal structure of cerebroside suggests that the overall crystallographic conformation of cerebroside is preserved to a large degree in hydrated bilayers. Variation of temperature from 73 degrees to 86 degrees C and CHOL concentration from 0 to 51 mol% results in small changes in this general orientation of the amide group. 2H spectra of chain-labeled NPGS and labeled CHOL in NPGS/CHOL bilayer demonstrate that molecular exchange between the gel and liquid-gel (LG) phases is slow on the 2H time scale, and this facilitates the simulation of the two component 2H spectra of [7,7-2H2]NPGS/CHOL mixtures. Simulation parameters are used to quantitate the fractions of gel and LG cerebroside. The quadrupole splitting of [7,7-2H2]NPGS/CHOL mixtures and 2H simulations allows the LG phase bilayer fraction to be characterized as an equimolar mixture of cerebroside and CHOL.  相似文献   

4.
The effect of myelin basic protein on the myelin lipid cerebroside sulfate was studied by differential scanning calorimetry and use of the fatty acid spin label, 16-S-SL, in order to determine (i) the effect of basic protein on the metastable phase behavior experienced by this lipid, and (ii) to determine if basic protein perturbs the lipid packing as it does with some acidic phospholipids. The effects of basic protein on the thermodynamic parameters of the lipid phase transition were compared with those of polylysine which has an ordering effect on acidic phospholipids as a result of its electrostatic interactions with the lipid head groups. Different synthetic species of cerebroside sulfate of varying fatty acid chain length and with and without a hydroxy fatty acid were used. The non-hydroxy fatty acid forms of cerebroside sulfate undergo a transition from a metastable to a more ordered stable state while the hydroxy fatty acid forms remain in the metastable state at the cation concentration used in this study (0.01 M Na+ or K+). The non-hydroxy fatty acid forms were still able to go into a stable state in the presence of both basic protein and polylysine. At low concentrations, basic protein increased the rate of the transition to the stable state, while polylysine decreased it for the longest chain length form studied. However, at high concentrations, basic protein probably prevented formation of the stable state. The hydroxy fatty acid forms did not go into the stable state in the presence of basic protein and polylysine. It is argued that the increased rate of formation of the stable state in the presence of basic protein and decreased rate in the presence of polylysine are consistent with interdigitation of the lipid acyl chains in the stable state. Basic protein also had a small perturbing effect on the lipid. It decreased the total enthalpy of the lipid phase transition. When added to the non-hydroxy fatty acid forms it increased the temperature of the liquid crystalline to metastable phase transition and decreased the temperature of the stable to liquid crystalline phase transition. It significantly decreased the transition temperature of the hydroxy fatty acid forms but only a portion of the lipid was affected. In contrast, polylysine increased the transition temperature of the metastable and stable states of all forms of cerebroside sulfate but had a greater effect on the non-hydroxy fatty acids forms than on the hydroxy fatty acid forms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The mechanism of fatty acid-dependent uncoupling by mitochondrial uncoupling proteins (UCP) is still in debate. We have hypothesized that the anionic fatty acid head group is translocated by UCP, and the proton is transported electroneutrally in the bilayer by flip-flop of the protonated fatty acid. Alkylsulfonates are useful as probes of the UCP transport mechanism. They are analogues of fatty acids, and they are transported by UCP1, UCP2, and UCP3. We show that undecanesulfonate and laurate are mutually competitive inhibitors, supporting the hypothesis that fatty acid anion is transported by UCP1. Alkylsulfonates cannot be protonated because of their low pK(a), consequently, they cannot catalyze electroneutral proton transport in the bilayer and cannot support uncoupling by UCP. We report for the first time that propranolol forms permeant ion pairs with the alkylsulfonates, thereby removing this restriction. Because a proton is transported with the neutral ion pair, the sulfonate is able to deliver protons across the bilayer, behaving as if it were a fatty acid. When ion pair transport is combined with UCP1, we now observe electrophoretic proton transport and uncoupling of brown adipose tissue mitochondria. These experiments confirm that the proton transport of UCP-mediated uncoupling takes place in the lipid bilayer and not via UCP itself. Thus, UCP1, like other members of its gene family, translocates anions and does not translocate protons.  相似文献   

6.
Cerebrosides have been isolated from adult human aortic tissue. Each aorta was divided into portions classified as normal, fatty streaks, fibrous plaques, or complicated lesions. The cerebrosides were isolated by Florisil column chromatography, mild alkaline methanolysis, a second Florisil column, and preparative thin-layer chromatography. The concentration of cerebrosides was higher in fatty streaks than in the more advanced plaques; apparently normal tissue gave the same cerebroside content as plaques found in the same aorta. The quantities of cerebrosides ranged from 0.01 to 0.73% of the total lipid. Of the 16 cerebroside samples isolated, 10 contained glucosyl ceramide, 1 contained galactosyl ceramide, and 5 were not analyzed for specific hexose. The fatty acid distribution was determined for 11 of the samples; it was similar to that of spleen cerebrosides. We suggest that aortic cerebrosides originate in the plasma. "Normal tissue" cerebrosides contained less unsaturated fatty acid than cerebrosides from a diseased area of the same aorta. Preparative thin-layer chromatography, the last step of cerebroside isolation, always separated at least two unidentified substances. One of these substances yielded both glucose and galactose on acid hydrolysis. Their removal from the cerebrosides accounts for the lower values for cerebroside compared to other authors' determinations.  相似文献   

7.
Cerebroside, sulfatide, monoglycosyl glyceride, and ester cerebroside were isolated from frog brain and sciatic nerve, and their distribution and chemical constituents were determined. The long-chain base compositions of cerebroside, sulfatide, and ester cerebroside were unique in the presence of branched-base components (5-15% of the total bases) and in the abundance of saturated dihydroxy base components (15-45% of the total). The amount of branched long-chain bases was greater in sciatic nerve than in brain. The hexose composition of the glycolipids consisted entirely of galactose except for brain cerebroside, in which a small amount of glucose was detected. Monogalactosyl glyceride consisted of the diacyl and alkylacyl forms, in a molar ratio of 81:19 for brain and 62:38 for sciatic nerve. The fatty acid composition of glycosphingolipids was characterized by the predominance of hydroxy and nonhydroxy 24:1 acids, and the concentration of 24:0 was extremely low. The proportion of unsaturated fatty acids accounted for 80% of the total. Major fatty acids of monogalactosyl glyceride were palmitic, oleic, stearic, and palmitoleic acids; the highest concentration was that of palmitic acid. Ester cerebroside was separated into three subfractions mainly on the basis of the proportion of hydroxy and nonhydroxy components in the amide-linked fatty acids.  相似文献   

8.
Summary The effect of myelin basic protein from normal human central nervous system on lipid organization has been investigated by studying model membranes containing the protein by differential scanning calorimetry or electron spin resonance spectroscopy. Basic protein was found to decrease the phase transition temperature of dipalmitoyl phosphatidyl-glycerol, phosphatidic acid, and phosphatidylserine. The protein had a greater effect on the freezing temperature, measured from the cooling scan, than on the melting temperature, measured from the heating scan. These results are consistent with partial penetration of parts of the protein into the hydrocarbon region of the bilayer in the liquid crystalline state and partial freezing out when the lipid has been cooled below its phase transition temperature.The effect of the protein on fatty acid chain packing was investigated by using a series of fatty acid spin labels with the nitroxide group located at different positions along the chain. If the protein has not yet penetrated, it increases the order throughout the bilayer in the gel phase, probably by decreasing the repulsion between the lipid polar head groups. Above the phase transition temperature, when parts of it are able to penetrate, it decreases the motion of the lipid fatty acid chains greatly near the polar head group region, but has little or no effect near the interior of the bilayer. Upon cooling again the protein still decreases the motion near the polar head group region but increases it greatly in the interior. Thus, the protein penetrates partway into the bilayer, distorts the packing of the lipid fatty acid chains, and prevents recrystallization, thus decreasing the phase transition temperature.The magnitude of the effect varied with the lipid and was greatest for phosphatidic acid and phosphatidylglycerol. It could be reversed upon cooling for phosphatidylglycerol but not phosphatidic acid. The protein was only observed to decrease the phase transition temperature of phosphatidylserine upon cooling. It had only a small effect on phosphatidylethanolamine and no effect on phosphatidylcholine. Thus, the protein may penetrate to a different extent into different lipids even if it binds to the polar head group region by electrostatic interactions.  相似文献   

9.
Studies have been made on the content of cerebrosides and cerebroside sulfates, as well as on their fatty acid composition in the brain of reptiles, subclass Anapsida (tortoises Emys orbicularis and Testudo horsfieldi) and subclass Lepidosauria (lizards Agama caucasica, A. sanguinolenta, Phrynocephalus mystaceus and snake Natrix tesselata). Total content of cerebrosides and cerebroside sulfates is higher in the brain of Lepidosaurians than in that of Anapsids. In the brain of tortoises, the content of cerebroside fraction with hydroxy fatty acids is significantly higher than of the fraction with normal fatty acids, which is also typical of the brain of homoiothermic mammals and birds. In the brain of Lepidosaurians, concentration of hydroxycerebrosides is considerably lower than of cerebrosides with normal fatty acids, which is similar to lower vertebrates -- amphibians and fishes. Low content of hydroxycerebrosides was found in all the Lepidosaurians investigated, irrespectively of their ecological conditions, being therefore dependent on their phylogenetic position. The composition of fatty acids, both normal and hydroxyderivates, as well as that of glycolipids from the brain of Anapsids and Lepidosaurians is essentially similar. However, some interspecific differences were noted in the pattern of fatty acids of cerebrosides and cerebroside sulfates of the brain, which concern the content of saturated and long chain fatty acids.  相似文献   

10.
—Cerebroside in the brain is highly localized in myelin and has a relatively slow turnover rate. The aim of this study was to evaluate the true cerebroside biosynthetic activity under conditions in which the degradation and reutilization of brain lipids were as small as possible. The 3-week-old mice were decapitated at 0·5, 1, 2·5, 5 and 15 min after the intraperitoneal injection of labelled acetate and the incorporation of radioactivity into each lipid class was examined. Even at 0·5 min, a considerable amount of radioactivity was found in simple lipids, especially in the free fatty acid fraction, and in the course of time the radioactivity of complex lipids increased. On the other hand, the incorporation of radioactivity into cerebrosides was extremely small throughout the experimental period. Results indicated that the low radioactivity of cerebroside might be due to its high content of long-chain fatty acids which were weakly labelled. The radioactivity of the sphingosine moiety was also low. In short, one of the rate-limiting steps of cerebroside synthesis in brain might exist in long-chain fatty acid and sphingosine synthesis. In addition, the incorporation curves of each component of cerebroside were compared with each other and the difference of the incorporation pattern of non-hydroxy fatty acids of cerebroside was noted.  相似文献   

11.
The conformation and molecular packing of permethylated beta-D-galactosyl-N-octadecanoyl-D-spingosine (cerebroside) was determined by X-ray single crystal analysis at 185 K (R = 0.16). The lipid crystallizes in the orthorhombic space group P2(1)2(1)2(1) with the unit cell dimensions a = 8.03, b = 7.04 and c = 88.10 A. The four molecules in the unit cell pack in a bilayer arrangement with tilting (48 degrees) hydrocarbon chains. The direction of the chain tilt alternates in the two bilayer halves and in adjacent bilayers. In order to define the effect of hydrogen bonds on the molecular conformation the structural features of the permethylated cerebroside are compared with that of unsubstituted cerebroside (I. Pascher and S. Sundell (1977) Chem. Phys. Lipids 20, 179). It is shown that methylation of the hydrogen donor groups does not affect the conformation of the ceramide part. However, by abolishing the intramolecular hydrogen bond between the amide N--H group and the glycosidic oxygen the galactose ring changes its orientation from layer-parallel to layer-perpendicular. Calculations using molecular mechanics, MM2(87), show that in natural cerebroside the intramolecular hydrogen bond stabilizes the theta 1 = -syn-clinal conformation about the C(1)--C(2) sphingosine bond by 2-2.5 kcal/mol compared to other staggered conformations. The significance of the L shape of the native cerebroside, making both the carbohydrate and polar ceramide groups accessible as a binding epitope in recognition processes, is discussed.  相似文献   

12.
The properties of brain galactocerebroside monolayers   总被引:1,自引:0,他引:1  
Using a Langmuir film balance we have compared the properties of films of the brain galactocerebrosides at 37 degrees C. There are two types of cerebroside in brain, those with an alpha-hydroxy substituent on the acyl chain (HFA) and those without (NFA). At equivalent pressures the areas of both cerebroside films are significantly less than the areas of films of the brain glycerolipids, the choline and ethanolamine phosphatides. The isotherm of NFA galactocerebrosides has two discontinuities, one at low and one at high film pressure, while the isotherm of HFA galactocerebrosides is a smooth curve at all film pressures. Below the high-pressure transition the area of the NFA film is significantly larger than the area of the HFA film. When compressed beyond the high-pressure transition there is a marked hysteresis between compression and expansion isotherms of the NFA galactocerebrosides. The pressures of both films continue to rise steeply when they are compressed into areas which are too small for them to exist as simple monolayers. We conclude that under compression cerebroside films form bilayer structures; that bilayer formation starts at low pressure and occurs progressively as the HFA cerebroside monolayer is compressed, but occurs more abruptly in the NFA cerebroside monolayer at the high-pressure-transition region of the isotherm. A study of pure cerebrosides with a single defined acyl chain shows that there is a correlation between the relative volumes of the hydrophobic and hydrophilic parts of the molecule and the ease of bilayer formation. The larger the relative volume of the hydrophilic group the more readily the cerebroside forms a bilayer film. Other brain lipids added to cerebroside monolayers have sharply differing effects on their areas. The areas of films containing cholesterol are less than the areas calculated by adding the areas of the pure components multiplied by their mole fractions. On the other hand, the area of phosphatidylcholine-containing films is much larger than calculated.  相似文献   

13.
Four glycolipids have been isolated from three fractions of pig blood. The glycolipids were presumably cerebroside, diglycosyl ceramide, triglycosyl ceramide, and globoside. The blood fractions were erythrocytes and plasma high and low density lipoproteins. Fatty acid distributions were determined for each glycolipid as a means to assist in identifying relationships among the several glycolipids. Normal fatty acids predominated in all glycolipids except the globosides from erythrocytes in which the amount of hydroxy acids was slightly greater than the amount of normal acids. Hydroxy acids appeared to be present in all the glycolipids, but the concentration was very low in cerebrosides isolated from high density lipoproteins and erythrocytes, and in diglycosyl ceramide and globoside of the low density lipoproteins. In general, the average fatty acid chain length increased from cerebroside to globoside. This was most apparent in erythrocytes and also greater for normal acids than for hydroxy acids. Fatty acid distributions of erythrocyte glycolipids had sufficient variation to make a metabolic relationship by simple addition of a hexose appear doubtful. While the fatty acid distributions found in plasma lipoproteins were more similar, some means of acyl group selection is probably present for either the synthesis or degradation of these glycolipids.  相似文献   

14.
The effect of the fluorophore trans-parinaric acid on the structure of lipid bilayer was studied and compared with the effect of other 'perturbants'. These include commonly used fluorophores (diphenylhexatriene, heptadecylhydroxycoumarin, cis-parinaric acid and two fatty acids, palmitic and oleic acids). Differential scanning calorimetry (DSC) and proton nuclear magnetic resonance techniques were used to evaluate structural changes in the lipid bilayers. The thermodynamic parameters of dipalmitoylphosphatidylcholine multilamellar vesicles obtained from the DSC thermograms suggest that trans-parinaric acid differs from the other 'perturbants'. trans-Parinaric acid has the most pronounced impact on the Tm, the width (delta T1/2) and the index of asymmetry of the main gel to liquid crystalline phase transition without any effect on its transition, delta H. The presence of trans-parinaric acid in the lipid bilayer of dimyristoylphosphatidylcholine small unilamellar vesicles influences the chemical shift difference between the choline protons of phosphatidylcholine molecules present in the two leaflets of the vesicle bilayer (delta delta H). This suggests that trans-parinaric acid affects the head group packing in the bilayer. Its main effect is abolishing the major alterations in head group packing that occur through the phase transition. The above data indicate that trans-parinaric acid is concentrated in the gel phase domains, whereby it stabilizes the phase separation between the gel and liquid crystalline phases, probably by affecting lipid molecules present in the boundary regions between these two domain types.  相似文献   

15.
Abstract— Glial cells were isolated from bovine white matter by differential centrifugation. The fatty aldehyde and fatty acid compositions of ethanolamine glycerophosphatides (EGP), serine glycerophosphatides (SGP) and choline glycerophosphatides (CGP) were determined by gas-liquid chromatography. The fatty acid compositions of the sphingo-lipids including sphingomyelin, cerebroside and cerebroside sulphate, and of minor lipid components including cholesterol esters and triglycerides, were also determined by gas-liquid chromatography. The relative proportions correlated closely with the results obtained by O'B rien and S ampson (1965 b ) for adult human brain. The fatty aldehyde compositions of the glycerophosphatides were more closely related to the corresponding fatty acid compositions of the plasma membrane than of the mitochondria. Long-chain fatty acids (19–26 carbon atoms) were detected in sphingomyelin, cerebroside and cerebroside sulphate; this indicates that chain-elongation beyond C18 occurs in the glial cells.  相似文献   

16.
Cerebroside was isolated from pea (Pisum sativum L.) seeds by solvent extraction, mild alkaline hydrolysis and silicic acid column chromatography. The purified material was identified as cerebroside by thin-layer chromatography and infrared spectrometry. Hydrolysates of the cerebroside were divided into fatty acid, sphingosine base and sugar fractions, and analysed, mainly by gas-liquid chromatography. The major fatty acid components were hydroxytricosanoic, hydroxydocosanoic and hydroxytetracosanoic acids. Dihydrosphingosine was the predominant sphingosine base. Only glucose was detected in the sugar fraction. Based on these results, one of the major species of pea cerebroside is suggested to be N-hydroxytricosanoyl-glucopyranosyl-dihydrosphingosine.  相似文献   

17.
The lipid phase of transverse tubule membrane was probed with a variety of fatty acid spin labels. The motion of the probe increased as the distance between the spin label and polar head group increased, in agreement with results reported in other membranes. The value of the order parameter at 37 degrees C for a fatty acid spin label containing the label attached to its fifth carbon atom was closer to values reported for bacterial membranes than to the lower values reported for other mammalian membranes. Order parameters for spin labels containing the label nearer to the center of the bilayer were closer to the values reported in other mammalian membranes than to values reported for bacterial membranes. These results indicate that the lipid segments in the vicinity of the polar head group, and less so those near the center of the bilayer, are motionally more restricted in transverse tubules than in other mammalian membranes. In particular, the lipid phase of the transverse tubule membrane is less fluid than that of the sarcoplasmic reticulum membrane. A possible role of the high cholesterol content of transverse tubules in generating the lower fluidity of its lipid phase is discussed.  相似文献   

18.
Free ceramide and cerebroside were isolated from black gram sprouts of all germinating stages. Free ceramide and cerebroside were found to increase during germination.

The major sphingosine bases of free ceramide were 4-hydroxysphingenine and 4-hydroxy-sphinganine (trihydroxy type) while that of cerebroside was sphinga-4,8-dienine (dihydroxy type). A change in the component sphingosine base was that 4-hydroxysphingenine in free ceramide and cerebroside increased slightly after germination.

The major fatty acid of free ceramide was α-hydroxylignoceric acid while that of cerebroside was α-hydroxypalmitic acid. Changes in component fatty acid were that α-hydroxylignoceric acid in both sphingolipids increased after germination.  相似文献   

19.
The rate of hydrolysis of phosphatidylcholine bilayers by soluble phospholipase A2 (PLA2) is greatly enhanced by the presence in the bilayer of a threshold mole fraction of the reaction products: fatty acid and lysophosphatidylcholine (lyso-PC). The threshold requirement of these products appears to vary as a function of vesicle and calcium concentration. To further identify the roles of myristic acid, lyso-PC, and calcium in promoting optimal PLA2 activity, we have quantified the various interactions among these components and dimyristoylphosphatidylcholine large unilamellar vesicles. The bilayer/water partition coefficient for myristic acid was obtained by competition of vesicles for the binding of the fatty acid to an acrylodan conjugate of an intestinal fatty acid binding protein as monitored by the acrylodan fluorescence emission spectrum. The partition coefficient for lyso-PC was obtained by a similar procedure using the tryptophan emission spectrum of bovine serum albumin. The effect of calcium concentration on these interactions was also quantified. These results were incorporated into an empirical model to describe the threshold requirements for these products in the bilayer. This information is vital for elucidating the mechanism of activation of PLA2 by the hydrolysis products.  相似文献   

20.
The molecular organization, interactions, phase state and membrane-membrane interactions of model membranes containing cerebroside (GalCer), sulfatide (Sulf) and myelin basic protein (MBP) were investigated. Sulf shows a larger cross-sectional area than GalCer, in keeping with the lateral electrostatic repulsions in the negatively charged polar head group. The interactions of GalCer with different phospholipids are similar while those with Sulf depend on the phosphoryl choline moiety in the phospholipid. MBP induces a decrease of the phase transition temperature in both lipids but with Sulf this occurs at lower proportions of MBP. In mixtures of Sulf with phosphatidylcholine MBP induces phase separation among Sulf-rich and PC-rich domains. Extensive apposition of bilayers containing Sulf is induced by MBP while GalCer interferes with this process. Few membrane interactions proceed to bilayer merging or whole bilayer fusion and the glycosphingolipids help preserve the membrane integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号