首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous work it has been shown that the route from indoleacetic acid (IAA) to indolebutyric acid (IBA) is likely to be a two-step process with an unknown intermediate designated ‘product X′. Our objective was to characterize and purify enzyme activities that are involved in these reactions. Indole-3-butyric acid synthetase was isolated and characterized from light-grown maize seedlings (Zea mays L.), which were able to synthesize IBA from indole-3-acetic acid (IAA) with ATP and acetyl-CoA as cofactors. The enzyme activity is most likely located on the membranes of the endoplasmic reticulum, as shown by means of aqueous two-phase partitioning and sucrose density gradient centrifugation, with subsequent marker enzyme analysis. It was possible to solubilize the enzyme from the membranes with a detergent (CHAPS) and high concentrations of NaCl. The molecular mass of solubilized IBA synthetase was ca 31 kDa and its isoelectric point was at pH 4.8. The enzyme forming the reaction intermediate had a molecular mass of only 20 kDa and it seemed to be located on different membranes. Inhibition experiments with reducing agents and sulfhydryl reagents indicated that no sulfhydryl groups or disulfide bridges were present in the active centre of IBA synthetase. KCN inhibited the enzyme activity completely, and sodium azide by about 50%. Substrate analogs. such as 1-IAA, 2,4-dichlorophenoxyacetic acid, phenylacetic acid, and naphthaleneacetic acid, inhibited IBA formation to a high extent. Experiments with tunicamycin gave evidence that the enzyme is not a glycoprotein. These findings were confirmed by affinity chromatography with Concanavalin A. where the enzyme did not bind to the matrix. Further purification of the IBA synthetase on an ATP-affinity column resulted in a more than 1 000-fold purification compared to the microsomal membranes. IBA synthetase activity was also present in other plant families. Our results present further evidence that IBA is synthesized by a two-step mechanism involving two different enzyme activities.  相似文献   

2.
A hydroponic experiment was conducted to investigate the effects of indole-3-acetic acid (IAA) on arsenic (As) uptake and antioxidative enzymes in fronds of Pteris cretica var. nervosa (As hyperaccumulator) and Pteris ensiformis (non-hyperaccumulator). Plants were exposed to 2 mg L?1 As(III), As(V) or dimethylarsinic acid (DMA) and IAA concentrations for 14 d. The biomass and total As in the plants significantly increased at 30 mg L?1 IAA. Superoxide dismutase (SOD) activities significantly increased with IAA addition. Catalase (CAT) activities showed a significant increase in P. ensiformis exposed to three As species at 30 or 50 mg L?1 IAA but varied in P. cretica var. nervosa. Peroxidase (POD) activities were unchanged in P. ensiformis except for a significant decrease at 50 mg L?1 IAA under As(III) treatment. However, a significant increase was observed in P. cretica var. nervosa at 10 mg L?1 IAA under As(III) or DMA treatment and at 50 mg L?1 IAA under As(V) treatment. Under DMA stress, malondialdehyde contents in fronds of P. cretica var. nervosa showed a significant decrease at 10 mg L?1 IAA but remained unchanged in P. ensiformis. Therefore, IAA enhanced As uptake and frond POD activity in P. cretica var. nervosa under As stress.  相似文献   

3.
Distribution of endogenous diffusible auxin into agar blocks from phototropically stimulated maize coleoptile tips was studied using a bioassay and a physicochemical assay, to clarify whether phototropism in maize coleoptiles involves a lateral gradient in the amount of auxin. At 50 min after the onset of phototropic stimulation, when the phototropic response was still developing, direct assay of the blocks with the Avena curvature test showed that the auxin activity in the blocks from the shaded half-tips was twice that of the lighted side, at both the first and second positive phototropic curvatures. However, physicochemical determination following purification showed that the amount of indole-3-acetic acid (IAA) was evenly distributed in the blocks from lighted and shaded coleoptile half-tips at both the first and second positive phototropic curvatures. The even distribution of the IAA was also confirmed with the Avena curvature test following purification by HPLC. These results indicate that phototropism in maize coleoptiles is not caused by a lateral gradient of IAA itself and thus cannot be described by the Cholodny-Went theory. Furthermore, the lower auxin activity in the blocks from the lighted half-tips suggests the presence of inhibitor(s) interfering with the action of auxin and their significant diffusion from unilaterally illuminated coleoptile tips.  相似文献   

4.
A new enzyme, named indole-3-aldehyde oxidase (IAldO), was identified in citrus ( Citrus sinensis L. Osbeck cv. Shamouti) leaves. The enzyme was partially purified by (NH4)2SO4 fractionation. Sephadex G-200 gel filtration and DEAE-cellulose ion exchange chromatography. IAldO catalyzes the oxidation of indole-3-aldehyde (IAld) to indole-3-carboxylic acid (ICA) with the production of H2O2. The enzyme is highly specific for IAld. The apparent KM of the enzyme for IAld is 19 μ M . The optimum oxidation of IAld occurs at pH 7. 5. The molecular mass of the enzyme, as determined by Sepharose-6B gel filtration, is about 200 kDa. Based on inhibitor studies, it is concluded that IAldO is not a flavin-linked oxidase and there is no requirement for free sulfhydryl groups or divalent cations for maximum activity. The enzyme is strongly inhibited by benzaldehyde. Ethylene pretreatment, wounding and aging of leaf tissues did not affect enzyme activity, suggesting that the enzyme is constitutive in citrus tissues.  相似文献   

5.
Abstract. The hypothesis that tropic responses result from lateral auxin gradients was examined in coleoptiles of red-light-grown maize ( Zea mays L.) by measuring endogenous IAA (indole-3-acetic acid) using a physicochemical method. Phototropic stimulation (unilateral blue light; 8s at 0.33 μmol m−2s−1) was found to induce a lateral gradient of solvent-extractable IAA in a subapical zone (2-7mm from the tip). The gradient occurred in advance of the bending response, with a decrease of IAA in the irradiated half and a compensatory increase in the shaded half. The maximal gradient measured was about 1:2 (irradiated: shaded). Diffusible IAA, obtained from the cut end of an excised coleoptile tip (3mm long, with its base split by 1mm), was similarly redistributed between the two sides, indicating that IAA is laterally translocated in the tip and that the resulting IAA gradient migrates to the subapical zone. A smaller gradient was induced in a basal zone (12-17mm from the tip). This gradient was initiated about 20 min later than that at the subapical zone, in agreement with a similar delay of bending observed in this zone. Gravitropic stimulation (60° from the vertical) also resulted in a lateral gradient of extractable IAA in the subapical zone, the gradient preceding the bending response. It is concluded that the tropisms of maize coleoptiles are mediated by IAA gradients, which are most likely caused by lateral IAA transport as the Cholodny-Went theory of tropisms describes. From IAA measurement data, the mean velocity of basipetally-polar transport of endogenous IAA was estimated to be 12 mm h−1.  相似文献   

6.
Based on the distribution constant of IAA, the efficiency of solvent partitioning has been improved by modifying the proportions of the solvents. IAA is recovered almost quantitatively by this method which also renders further sample reduction superfluous. Selective IAA recovery is supported by the distribution of immunoreactive materials on chromatograms. This modified scheme simplifies prepurification of samples for more reliable immunoassay.  相似文献   

7.
8.
Four-day-old stem segments of Zea mays L. cv. Seneca 60 were treated sequentially with phenolic substances and indole-3-acetic [2-14C] acid ([2-14C]IAA). Formation of bound IAA was rapid, but a pretreatment with p-coumaric acid, ferulic acid or 4-methylumbelliferone decreased the level of bound IAA. The decrease is not likely related to the effect of the phenolics on enzymic oxidation of IAA, since the level of free IAA was not limiting and the activity of ferulic acid in enzymic oxidation of IAA is different from that of p-coumaric acid and 4-methylum-belliferone. Apparently these compounds inhibited the formation of bound IAA and consequently caused an accumulation of free IAA. In contrast, caffeic acid, protocatechuic acid and 2,3-dihydro-2, 2-dimethyl-7-benzofuranol had little effect. After the uptake of IAA there was a slow but steady incorporation of the radioactivity into the 80% ethanol-insoluble, 1 M NaOH-soluble fraction. Phenolic substances also affected this process. The compounds which are cofactors of IAA-oxidase increased the incorporation while those which are inhibitors of IAA-oxidase decreased the incorporation. Results suggest that the phenolics also affected the enzymic oxidation of IAA in vivo in the same way as in vitro.  相似文献   

9.
10.
Indole-3-butyric acid (IBA) was much more effective than indole-3-acetic acid (IAA) in inducing adventitious root formation in mung bean ( Vigna radiata L.) cuttings. Prolonging the duration of treatment with both auxins from 24 to 96 h significantly increased the number of roots formed. Labelled IAA and IBA applied to the basal cut surface of the cuttings were transported acropetally. With both auxins, most radioactivity was detected in the hypocotyl, where roots were formed, but relatively more IBA was found in the upper sections of the cuttings. The rate of metabolism of IAA and IBA in these cuttings was similar. Both auxins were metabolized very rapidly and 24 h after application only a small fraction of the radioactivity corresponded to the free auxins. Hydrolysis with 7 M NaOH indicates that conjugation is the major pathway of IAA and IBA metabolism in mung bean tissues. The major conjugate of IAA was identified tentatively as indole-3-acetylaspartic acid, whereas IBA formed at least two major conjugates. The data indicate that the higher root-promoting activity of IBA was not due to a different transport pattern and/or a different rate of conjugation. It is suggested that the IBA conjugates may be a better source of free auxin than those of IAA and this may explain the higher activity of IBA.  相似文献   

11.
Levels of endogenous indole-3-acetic acid (IAA) and indole-3-acetylaspartic acid (IAAsp) were monitored in various parts of leafy cuttings of pea ( Pisum sativum L. cv. Marma) during the course of adventitious root formation. IAA and IAAsp were identified by combined gas chromatography—mass spectrometry, and the quantitations were performed by means of high performance liquid chromatography with spectrofluorometric detection. IAA levels in the root forming tissue of the stem base, the upper part of the stem base (where no roots were formed), and the shoot apex remained constant during the period studied and were similar to levels occurring in the intact seedling. A reduction of the IAA level in the root regenerating zone, achieved by removing the shoot apex, resulted in almost complete inhibition of root formation. The IAAsp level in the shoot apex also remained constant, whereas in the stem base it increased 6-fold during the first 3 days. These results show that root initiation may occur without increased IAA levels in the root regenerating zone. It is concluded that the steady-state concentration is maintained by basipetal IAA transport from the shoot apex and by conjugation of excessive IAA with aspartic acid, thereby preventing accumulation of IAA in the tissue.  相似文献   

12.
The large diversity of organisms inhabiting various environmental niches on our planet are engaged in a lively exchange of biomolecules, including nutrients, hormones, and vitamins. In a quest to survive, organisms that we define as pathogens employ innovative methods to extract valuable resources from their host leading to an infection. One such instance is where plant-associated bacterial pathogens synthesize and deploy hormones or their molecular mimics to manipulate the physiology of the host plant. This commentary describes one such specific example—the mechanism of the enzyme AldA, an aldehyde dehydrogenase (ALDH) from the bacterial plant pathogen Pseudomonas syringae which produces the plant auxin hormone indole-3-acetic acid (IAA) by oxidizing the substrate indole-3-acetaldehyde (IAAld) using the cofactor nicotinamide adenine dinucleotide (NAD+) (Bioscience Reports (2020) 40(12), https://doi.org/10.1042/BSR20202959). Using mutagenesis, enzyme kinetics, and structural analysis, Zhang et al. established that the progress of the reaction hinges on the formation of two distinct conformations of NAD(H) during the reaction course. Additionally, a key mutation in the AldA active site ‘aromatic box’ changes the enzyme’s preference for an aromatic substrate to an aliphatic one. Our commentary concludes that such molecular level investigations help to establish the nature of the dynamics of NAD(H) in ALDH-catalyzed reactions, and further show that the key active site residues control substrate specificity. We also contemplate that insights from the present study can be used to engineer novel ALDH enzymes for environmental, health, and industrial applications.  相似文献   

13.
Plants as well as microorganisms, including bacteria and fungi, produce indole-3-acetic acid (IAA). IAA is the most common plant hormone of the auxin class and it regulates various aspects of plant growth and development. Thus, research is underway globally to exploit the potential for developing IAA-producing fungi for promoting plant growth and protection for sustainable agriculture. Phylogenetic evidence suggests that IAA biosynthesis evolved independently in bacteria, microalgae, fungi, and plants. Present studies show that IAA regulates the physiological response and gene expression in these microorganisms. The convergent evolution of IAA production leads to the hypothesis that natural selection might have favored IAA as a widespread physiological code in these microorganisms and their interactions. We summarize recent studies of IAA biosynthetic pathways and discuss the role of IAA in fungal ecology.  相似文献   

14.
Reverse-phase high-performance liquid chromatography was used to analyse 14C-labelled metabolites of indole-3-acetic acid (IAA) formed in the cortical and stelar tissues of Zea mays roots. After a 2-h incubation in [14C]IAA, stelar segments had metabolised between 1–6% of the methanol-extractable radioactivity compared with 91–92% by the cortical segments. The pattern of metabolites produced by cortical segments was similar to that produced by intact segments bathed in aqueous solutions of [14C]IAA. In contrast, when IAA was supplied in agar blocks to stelar tissue protruding from the basal ends of segments, negligible metabolism was evident. On the basis of its retention characteristics both before and after methylation, the major metabolite of [14C]IAA in Zea mays root segments was tentatively identified by high-performance liquid chromatography as oxindole-3-acetic acid.Abbreviations HPLC High-performance liquid chromatography - IAA Indole-3-acetic acid  相似文献   

15.
Mono- and diphenols were tested for their effects on the decarboxylation of [1-14C]IAA catalysed by purified horseradish peroxidase (EC 1.11.1.7) in the presence or absence of 2,4-dichlorophenol (DCP). The number of hydroxyl groups and their position relative to each other and the nature and position of other substituents on the aromatic ring were found to affect the activity. Although the effects were complex, the following generalizations may be made. (1) Monophenols produce activation when no other cofactor is present. p-Substituted monophenols are more active than o- or m-compounds. In the presence of DCP, the activity varies from slight activation to strong inhibition. (2) m-Diphenols also produce activation in the absence of other cofactors while o- and p-diphenols, with the exception of 3,4-dihydroxyacetophenone and 3,4-dihydroxypropiophenone, produce strong inhibition in the presence or absence of DCP. The o-diphenolsare degraded in the IAA-oxidizing enzyme system and thus produce only a temporary inhibition. (3) m-Diphenols and 3,4-dihydroxyacetophenone produce a sustained inhibition in the presence of DCP. (4) Substitution at position 2 significantly alters the activity of m-diphenols. (5) O-Methylation alters the activity of most o-diphenols. In the absence of DCP, o-methoxyphenols and certain other phenols such as 3,4-dihydroxyacetophenone and 2,6-dihydroxyacetophenone either promote or inhibit IAA oxidation depending on concentration.  相似文献   

16.
Elongation, indolyl-3-acetic acid (IAA) and abscisic acid (ABA) levels, – gas chromatography-mass spectrometry quantification –, in the elongating zone were analysed for maize ( Zea mays L., Cv. LG11) roots immersed in buffer solution with or without zeatin (Z). The effect of Z depends on the initial extension rate of roots. The slower growing roots are more strongly inhibited by Z (10−7−10−5 M ) and they show a greater increase in IAA and ABA content. When compared to the rapidly growing roots, the larger reactivity of the 'slow'ones cannot be attributed to a higher Z uptake as shown when using [14C]-Z. It is suggested that Z could regulate root elongation by acting on the IAA and/or ABA level. The comparative action of these two hormones is discussed.  相似文献   

17.
Sitbon F  Astot C  Edlund A  Crozier A  Sandberg G 《Planta》2000,211(5):715-721
A quantitative study of indole-3-acetic acid (IAA) turnover, and the contribution of tryptophan-dependent and tryptophan-independent IAA-biosynthesis pathways, was carried out using protoplast preparations and shoot apices obtained from wild-type and transgenic, IAA-overproducing tobacco (Nicotiana tabacum L.) plants, during a phase of growth when the level of endogenous IAA was stable. Based on the rate of disappearance of [13C6]IAA, the half-life of the IAA pool was calculated to be 1.1 h in wild-type protoplasts and 0.8 h in protoplasts from the IAA-overproducing line, corresponding to metabolic rates of 59 and 160 pg IAA (μg Chl)−1 h−1, respectively. The rate of conversion of tryptophan to IAA was 15 pg IAA (μg Chl)−1 h−1 in wild-type protoplasts and 101 pg IAA (μg Chl)−1 h−1 in protoplasts from IAA-overproducing plants. In both instances, IAA was metabolised more rapidly than it was synthesised from tryptophan. As the endogenous IAA pools were in a steady state, these findings indicate that IAA biosynthesis via the tryptophan-independent pathway was 44 pg IAA (μg Chl)−1 h−1 and 59 pg IAA (μg Chl)−1 h−1, respectively, in the wild-type and transformed protoplast preparations. In a parallel study with apical shoot tissue, the presumed site of IAA biosynthesis, the rate of tryptophan-dependent IAA biosynthesis exceeded the rate of metabolism of [13C6]IAA despite the steady state of the endogenous IAA pool. The most likely explanation for this anomaly is that, unlike the protoplast system, injection of substrates into the apical tissues did not result in uniform distribution of label, and that at least some of the [2H5]tryptophan was metabolised in compartments not normally active in IAA biosynthesis. This demonstrates the importance of using experimental systems where labelling of the precursor pool can be strictly controlled. Received: 18 January 2000 / Accepted 24 February 2000  相似文献   

18.
Previously we reported two metabolites of the insecticide carbofuran as persistent inhibitors of the peroxidase-catalysed oxidtion ofindole-3-acetic acid. In searching for more active inhibitors of this type, we have found that 5-hydroxy-2,2-dimethylchromene (β-tubanol), 2′,6′-dihydroxycetophenone oxime, 5-hydroxy-2,2-dimethylchroman, 2′,6′-dihydroxyacetophenone and 2,6-dihydroxybenzoic acid methyl ester were more active than the carbofuran metabolite 7-hydroxy-2,2-dimethyl-3-oxo-2,3-dihydrobenzofuran. Resorcinol, 5-hydroxy-2,2-dimethylchroman-4-one, 3-hydroxy-5-methoxy-2,2-dimethylchroman-4-one and 5-hydroxy-2-methylchrom-4-one were also inhibitory but with less activity. The new inhibitors differed from the well-known phenolic inhibitors such as caffeic acid in inhibition kinetics as demonstrated by the rate of disappearance of indole-3-acetic acid, the rate of formation of the oxidation products, and the transient spectral change in the enzyme.  相似文献   

19.
Primary roots of Zea mays cv. Ageotropic are nonresponsive to gravity and elongate approximately 0.80 mm h?1. Applying mucilage-like material (K-Y Jelly) to the terminal 1.5 cm of these roots induces graviresponsiveness and slow elongation 28% (i.e. from 0.80 to 0.58mm h?1). Applying mucilage-like material to one side of the terminal 1.5 cm of the root induces curvature toward the mucilage, irrespective of the root's orientation to gravity. Applying a 2-mm-wideband of mucilage-like material to a root's circumference 8 to 10 mm behind the root cap neither induces gravicurvature nor affects elongation significantly. Similarly, applying mucilage-like material to only the root cap does not significantly affect elongation or graviresponsiveness. Gravicurvature of mutant roots occurs only when mucilage-like material is applied to the root/root-cap junction. Reversing the caps of wild-type and mutant roots produces gravitropic responses characteristic of the root cap rather than the host root. These results are consistent with the suggestion that gravitropic effectors are growth inhibitors that move apoplastically through mucilage between the root cap and root.  相似文献   

20.
The enzyme indole-3-acetylglucose synthase (UDPG: indole-3-ylacetylglucosyl transferase) catalyzes the reaction: UDPG + IAA 1-O-IAGlc + UDP. The enzyme is abundantly present inimmature maize endosperm, but present in lesser amount in the endosperm ofgerminating kernels. Rabbit polyclonal antibodies, against purified IAGlcsynthase, easily visualize the presence of the enzyme protein in endosperm, butnot in vegetative tissue. However, after 4 to 8 h of incubation ofmesocotyl and coleoptile segments in 50 M 1-naphthalene aceticacid (NAA) solution, the IAGlc synthase protein is detectable by Western blotanalysis, and enzyme activity determined in whole tissue homogenate is alsoincreased. Induction of IAGlc synthase by NAA is inhibited by cycloheximide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号