首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Kidney ischemia/reperfusion injury (I/R) is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the alpha7nAChR, as attested by the absence of protection in alpha7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-alpha and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic alpha7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation.  相似文献   

2.
Angiogenesis is a critical physiological process for cell survival and development. Endothelial cells, necessary for the course of angiogenesis, express several non-neuronal nicotinic acetylcholine receptors (AChRs). The most important functional non-neuronal AChRs are homomeric α7 AChRs and several heteromeric AChRs formed by a combination of α3, α5, β2, and β4 subunits, including α3β4-containing AChRs. In endothelial cells, α7 AChR stimulation indirectly triggers the activation of the integrin αvβ3 receptor and an intracellular MAP kinase (ERK) pathway that mediates angiogenesis. Non-selective cholinergic agonists such as nicotine have been shown to induce angiogenesis, enhancing tumor progression. Moreover, α7 AChR selective antagonists such as α-bungarotoxin and methyllycaconitine as well as the non-specific antagonist mecamylamine have been shown to inhibit endothelial cell proliferation and ultimately blood vessel formation. Exploitation of such pharmacologic properties can lead to the discovery of new specific cholinergic antagonists as anti-cancer therapies. Conversely, the pro-angiogenic effect elicited by specific agonists can be used to treat diseases that respond to revascularization such as diabetic ischemia and atherosclerosis, as well as to accelerate wound healing. In this mini-review we discuss the pharmacological evidence supporting the importance of non-neuronal AChRs in angiogenesis. We also explore potential intracellular mechanisms by which α7 AChR activation mediates this vital cellular process.  相似文献   

3.
4.
The activation of cholinergic pathways by nicotine elicits various physiological and pharmacological effects in mammals. For example, the stimulation of nicotinic acetylcholine receptors (nAChRs) leads to an antinociceptive effect. However, it remains to be elucidated which subtypes of nAChR are involved in the antinociceptive effect of nicotine on nerve injury-induced allodynia and the underlying cascades of the nAChR-mediated antiallodynic effect. In this study, we attempted to characterize the actions of nicotine at the spinal level against mechanical allodynia in an animal model of neuropathic pain, tibial nerve transection (TNT) in rats. It was found that the intrathecal injection of nicotine, RJR-2403, a selective alpha4beta2 nAChR agonist, and choline, a selective alpha7 nAChR agonist, produced an antinociceptive effect on the TNT-induced allodynia. The actions of nicotine were almost completely suppressed by pretreatment with mecamylamine, a non-selective nicotinic antagonist, or dihydro-beta-erythroidine, a selective alpha4beta2 nAChR antagonist, and partially reversed by pretreatment with methyllycaconitine, a selective alpha7 nAChR antagonist. Furthermore, pretreatment with strychnine, a glycine receptor antagonist, blocked the antinociception induced by nicotine, RJR-2403, and choline. On the other hand, the GABAA antagonist bicuculline did not reverse the antiallodynic effect of nicotine. Together, these results indicate that the alpha4beta2 and alpha7 nAChR system, by enhancing the activities of glycinergic neurons at the spinal level, exerts a suppressive effect on the nociceptive transduction in neuropathic pain.  相似文献   

5.
Pregnancy-induced hypertension (PIH), also known as preeclampsia, is one of the major causes of maternal and fetal death. While the precise cause of PIH is not known, aberrant cytokine production and placenta participation are considered to be important factors. Gestational cigarette smoking, which is widely accepted to be harmful to both the mother and fetus, is protective against PIH. Based on the antiinflammatory activity of nicotine, the major component of cigarettes, we examined the effect of nicotine and other cholinergic agonists on placental inflammatory responses ex vivo. We observed that nicotine and other cholinergic agonists significantly suppress placenta cytokine production following stimulation. Placenta cells express the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), and using cholinergic antagonists, we demonstrated that the antiinflammatory effect of nicotine and other cholinergic agonists is, in part, mediated through the nAChR pathway. By contrast, cholinergic stimulation had no effect on the expression of soluble fms-like tyrosine kinase (sFlt), an antiangiogenic substance implicated in maternal vascular dysfunction during PIH. Mechanistic studies reveal that cholinergic agonists exert their antiinflammatory effects through the NFkappaB pathway. Taken together, our results suggest that cholinergic agonists, including nicotine, may reduce cytokine production by placenta cells via NFkappaB to protect against PIH.  相似文献   

6.
The expression and function of nicotinic ACh receptors (nAChRs) in rat coronary microvascular endothelial cells (CMECs) were examined using RT-PCR and whole cell patch-clamp recording methods. RT-PCR revealed expression of mRNA encoding for the subunits alpha(2), alpha(3), alpha(4), alpha(5), alpha(7), beta(2), and beta(4) but not beta(3). Focal application of ACh evoked an inward current in isolated CMECs voltage clamped at negative membrane potentials. The current-voltage relationship of the ACh-induced current exhibited marked inward rectification and a reversal potential (E(rev)) close to 0 mV. The cholinergic agonists nicotine, epibatidine, and cytisine activated membrane currents similar to those evoked by ACh. The nicotine-induced current was abolished by the neuronal nAChR antagonist mecamylamine. The direction and magnitude of the shift in E(rev) of nicotine-induced current as a function of extracellular Na(+) concentration indicate that the nAChR channel is cation selective and follows that predicted by the Goldman-Hodgkin-Katz equation assuming K(+)/Na(+) permeability ratio of 1.11. In fura-2-loaded CMECs, application of ACh, but not of nicotine, elicited a transient increase in intracellular free Ca(2+) concentration. Taken together, these results demonstrate that neuronal nAChR activation by cholinergic agonists evokes an inward current in CMECs carried primarily by Na(+), which may contribute to the plasma nicotine-induced changes in microvascular permeability and reactivity induced by elevations in plasma nicotine.  相似文献   

7.
Nicotinic (cholinergic) neurotransmission plays a critical role in the vertebrate nervous system, underlies nicotine addiction, and nicotinic receptor dysfunction leads to neurological disorders. The C. elegans neuromuscular junction (NMJ) shares many characteristics with neuronal synapses, including multiple classes of postsynaptic currents. Here, we identify two genes required for the major excitatory current found at the C. elegans NMJ: acr-16, which encodes a nicotinic AChR subunit homologous to the vertebrate alpha7 subunit, and cam-1, which encodes a Ror receptor tyrosine kinase. acr-16 mutants lack fast cholinergic current at the NMJ and exhibit synthetic behavioral deficits with other known AChR mutants. In cam-1 mutants, ACR-16 is mislocalized and ACR-16-dependent currents are disrupted. The postsynaptic deficit in cam-1 mutants is accompanied by alterations in the distribution of cholinergic vesicles and associated synaptic proteins. We hypothesize that CAM-1 contributes to the localization or stabilization of postsynaptic ACR-16 receptors and presynaptic release sites.  相似文献   

8.
The expression of four different gap junction gene products (alpha 1, beta 1, beta 2, and beta 3) has been analysed during rat skin development and the hair growth cycle. Both alpha 1 (Cx43) and beta 2 (Cx26) connexins were coexpressed in the undifferentiated epidermis. A specific, developmentally regulated elimination of beta 2 expression was observed in the periderm at E16. Coinciding with the differentiation of the epidermis, differential expression of alpha 1 and beta 2 connexins was observed in the newly formed epidermal layers. alpha 1 connexin was expressed in the basal and spinous layers, while beta 2 was confined to the differentiated spinous and granular layers. Large gap junctions were present in the basal layer, while small gap junctions, associated with many desmosomes, were typical for the differentiated layers. Although the distribution pattern for alpha 1 and beta 2 expression remained the same in the neonatal and postnatal epidermis, the RNA and protein levels decreased markedly following birth. Hair follicle development was marked by expression of alpha 1 connexin in hair germs at E16. Following beta 2 detection at E20, the expression increased for both alpha 1 and beta 2 in developing follicles. A cell-type-specific expression was detected in the outer root sheath, in the matrix, in the matrix-derived cells (inner root sheath, cortex and medulla) and in the dermal papilla. In addition, alpha 1 was specifically expressed in the arrector pili muscle, while sebocytes expressed both alpha 1 and beta 3 (Cx31) connexin. beta 1 connexin (Cx32) was not detected at any stage analysed. The results indicate that multiple gap junction genes contribute to epidermal and follicular morphogenesis. Moreover, based on the utilization of gap junctions in all living cells of the surface epidermis, it appears that the epidermis may behave as a large communication compartment that may be coupled functionally to epidermal appendages (hair follicles and sebaceous glands) via gap junctional pathways.  相似文献   

9.
The lymphocytic cholinergic system and its biological function   总被引:14,自引:0,他引:14  
Kawashima K  Fujii T 《Life sciences》2003,72(18-19):2101-2109
Lymphocytes are now known to possess the essential components for a non-neuronal cholinergic system. These include acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Stimulating lymphocytes with phytohemagglutinin, a T-cell activator; Staphylococcus aureus Cowan I, a B-cell activator; or cell surface molecules enhances the synthesis and release of ACh and up-regulates expression of ChAT and M(5) mAChR mRNAs. Activation of mAChRs and nAChRs on lymphocytes elicits increases in the intracellular Ca(2+) concentration and stimulates c-fos gene expression and nitric oxide synthesis. On the other hand, long-term exposure to nicotine down-regulates expression of nAChR mRNA. Abnormalities in the lymphocytic cholinergic system have been detected in spontaneously hypertensive rats and MRL-lpr mice, two animal models of immune disorders. Taken together, these data present a compelling picture in which immune function is, at least in part, under the control of an independent non-neuronal lymphocytic cholinergic system.  相似文献   

10.
Acetylcholine (ACh) and its receptors play a crucial role in bladder physiology. Here, we investigated the presence of muscarinic receptor subtypes (MR) and nicotinic acetylcholine receptor (nAChR) alpha-subunits in the mouse urothelium by RT-PCR and immunohistochemistry. With RT-PCR, we detected mRNAs coding for all of the five different MR subtypes and for the nicotinic receptor subunits alpha2, alpha4, alpha5, alpha6, alpha7, alpha9 and alpha10, whereas the alpha3-subunit was not expressed. Using immunohistochemistry, we localised a panel of acetylcholine receptors in the different layers of the murine bladder urothelium, with predominant appearance in the basal plasma membrane of the basal cell layer and in the apical membrane of the umbrella cells. M2R and subunit alpha9 were observed exclusively in the umbrella cells, whereas the MR subtypes 3-5 and the nAChR subunits alpha4, alpha7 and alpha10 were also detected in the intermediate and basal cell layers. The subunit alpha5 was localised only in the basal cell layer. In conclusion, the murine urothelium expresses multiple cholinergic receptors, including several subtypes of both MR and nAChR, which are differentially distributed among the urothelial cell types. Since these receptors have different electrophysiological and pharmacological properties, and therefore are considered to be responsible for different cellular responses to ACh, this differential distribution is expected to confer cell type-specificity of cholinergic regulation in the bladder urothelium.  相似文献   

11.
Pulmonary neuroepithelial bodies (NEB) are presumed airway chemoreceptors involved in respiratory control, especially in the neonate. Nicotine is known to affect both lung development and control of breathing. We report expression of functional nicotinic acetylcholine receptors (nAChR) in NEB cells of neonatal hamster lung using a combination of morphological and electrophysiological techniques. Nonisotopic in situ hybridization method was used to localize mRNA for the beta 2-subunit of nAChR in NEB cells. Double-label immunofluorescence confirmed expression of alpha 4-, alpha 7-, and beta 2-subunits of nAChR in NEB cells. The electrophysiological characteristics of nAChR in NEB cells were studied using the whole cell patch-clamp technique on fresh lung slices. Application of nicotine ( approximately 0.1-100 microM) evoked inward currents that were concentration dependent (EC50 = 3.8 microM; Hill coefficient = 1.1). ACh (100 microM) and nicotine (50 microM) produced two types of currents. In most NEB cells, nicotine-induced currents had a single desensitizing component that was blocked by mecamylamine (50 microM) and dihydro-beta-erythroidine (50 microM). In some NEB cells, nicotine-induced current had two components, with fast- and slow-desensitizing kinetics. The fast component was selectively blocked by methyllcaconitine (MLA, 10 nM), whereas both components were inhibited by mecamylamine. Choline (0.5 mM) also induced an inward current that was abolished by 10 nM MLA. These studies suggest that NEB cells in neonatal hamster lung express functional heteromeric alpha 3 beta 2, alpha 4 beta 2, and alpha 7 nAChR and that cholinergic mechanisms could modulate NEB chemoreceptor function under normal and pathological conditions.  相似文献   

12.
Non-neuronal nicotinic acetylcholine receptors (nAChRs) are abundantly expressed in skin and their function remains to be elucidated. Herein, we report that cutaneous alpha7 nAChR plays a role in the physiological control of cutaneous homeostasis. We studied in vitro effects of functional inactivation of alpha7 receptor on the expression of apoptosis regulators in keratinocytes (KC) lacking alpha7 nAChR, and extracellular matrix regulators in the skin of alpha7 knockout (KO) mice. Elimination of the alpha7 component of nicotinergic signaling in KC decreased relative amounts of the pro-apoptotic Bad and Bax at both the mRNA and the protein levels, suggesting that alpha7 nAChR is coupled to stimulation of keratinocyte apoptosis. The skin of alpha7 KO mice featured decreased amounts of the extracellular matrix proteins collagen 1alpha1 and elastin as well as the metalloproteinase-1. Taken together, these results suggest an important role for alpha7 nAChR in mediating plethoric effects of non-neuronal acetylcholine on cutaneous homeostasis.  相似文献   

13.
胆碱能抗炎通路是一条神经-免疫调节通路,以中枢神经系统的迷走神经为起点,以神经递质乙酰胆碱为基础,以免疫细胞膜表面的α7烟碱型乙酰胆碱受体(α7 nicotinic acetylcholine receptor, α7 nAChR)为关键作用位点。其中,电信号与化学信号相互转化,激活JAK-STAT3、PI3K-Akt等信号通路,抑制NF-κB的核转位,进而抑制促炎因子的释放,促进抑炎因子的释放,调节和控制机体的炎症,具体的作用机制正在研究中。研究表明,可以通过使用药物激活α7 nAChR和电刺激迷走神经这2种方法,激活胆碱能抗炎通路。其中,激活α7 nAChR具有操作简便、创伤小和效果显著等优势。常用药物有选择性激动剂,例如PNU282987和GTS-21等,非选择性激动剂例如烟碱。多项研究显示,该方法在脓毒症、缺血再灌注、胃肠炎、骨关节炎和自身免疫病等外周器官炎性疾病治疗中都具有一定的效果。α7 nAChR作为胆碱能抗炎通路的关键作用位点,成为许多炎性疾病的潜在治疗靶点,本文对胆碱能抗炎通路中的α7 nAChR所涉及的抗炎机制、通路激活方式,以及其近年来在炎性疾病中的应用进行了综述,为未来研究其具体作用机制和新的治疗靶点提供参考。  相似文献   

14.
Nitrosamines as nicotinic receptor ligands   总被引:1,自引:0,他引:1  
Schuller HM 《Life sciences》2007,80(24-25):2274-2280
Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the alpha7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the alpha7nAChR and caused influx of Ca(2+), activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the alpha7nAChR was enhanced when cells were maintained in an environment of 10-15% CO(2) similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the alpha7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention.  相似文献   

15.
Alzheimer's disease pathology is characterized by the presence of neuritic plaques and the loss of cholinergic neurons in the brain. The underlying mechanisms leading to these events are unclear, but the 42-amino acid beta-amyloid peptide (Abeta(1-42)) is involved. Immunohistochemical studies on human sporadic Alzheimer's disease brains demonstrate that Abeta(1-42) and a neuronal pentameric cation channel, the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), are both present in neuritic plaques and co-localize in individual cortical neurons. Using human brain tissues and cells that overexpress either alpha7nAChR or amyloid precursor protein as the starting material, Abeta(1-42) and alpha7nAChR can be co-immunoprecipitated by the respective specific antibodies, suggesting that they are tightly associated. The formation of the alpha7nAChR.Abeta(1-42) complex can be efficiently suppressed by Abeta(12-28), implying that this Abeta sequence region contains the binding epitope. Receptor binding experiments show that Abeta(1-42) and alpha7nAChR bind with high affinity, and this interaction can be inhibited by alpha7nAChR ligands. Human neuroblastoma cells overexpressing alpha7nAChR are readily killed by Abeta(1-42), whereas alpha7nAChR agonists such as nicotine and epibatidine offered protection. Because Abeta(1-42) inhibits alpha7nAChR-dependent calcium activation and acetylcholine release, two processes critically involved in memory and cognitive functions, and the distribution of alpha7nAChR correlates with neuritic plaques in Alzheimer's disease brains, we propose that interaction of the alpha7nAChR and Abeta(1-42) is a pivotal mechanism involved in the pathophysiology of Alzheimer's disease.  相似文献   

16.
Tobacco smoking is the main risk factor associated with chronic periodontitis, but the mechanisms that underlie this relationship are largely unknown. Recent reports proposed that nicotine plays an important role in tobacco-related morbidity by acting through the nicotinic acetylcholine receptors (nAChRs) expressed by non-neuronal cells. The aim of this study was to investigate whether α7 nAChR was expressed in periodontal tissues and whether it functions by regulating IL-1β in the process of periodontitis. In vitro, human periodontal ligament (PDL) cells were cultured with 10−12 M of nicotine and/or 10−9 M of alpha-bungarotoxin (α-Btx), a α7 nAChR antagonist. The expression of α7 nAChR and IL-1β in PDL cells and the effects of nicotine/α-Btx administration on their expression were explored. In vivo, an experimental periodontitis rat model was established, and the effects of nicotine/α-Btx administration on expression of α7 nAChR and development of periodontitis were evaluated. We found that α7 nAChR was present in human PDL cells and rat periodontal tissues. The expressions of α7 nAChR and IL-1β were significantly increased by nicotine administration, whereas α-Btx treatment partially suppressed these effects. This study was the first to demonstrate the functional expression of α7 nAChR in human PDL cells and rat periodontal tissues. Our results may be pertinent to a better understanding of the relationships among smoking, nicotine, and periodontitis.  相似文献   

17.

Background

Cigarette smoking adversely affects endochondral ossification during the course of skeletal growth. Among a plethora of cigarette chemicals, nicotine is one of the primary candidate compounds responsible for the cause of smoking-induced delayed skeletal growth. However, the possible mechanism of delayed skeletal growth caused by nicotine remains unclarified. In the last decade, localization of neuronal nicotinic acetylcholine receptor (nAChR), a specific receptor of nicotine, has been widely detected in non-excitable cells. Therefore, we hypothesized that nicotine affect growth plate chondrocytes directly and specifically through nAChR to delay skeletal growth.

Methodology/Principal Findings

We investigated the effect of nicotine on human growth plate chondrocytes, a major component of endochondral ossification. The chondrocytes were derived from extra human fingers. Nicotine inhibited matrix synthesis and hypertrophic differentiation in human growth plate chondrocytes in suspension culture in a concentration-dependent manner. Both human and murine growth plate chondrocytes expressed alpha7 nAChR, which constitutes functional homopentameric receptors. Methyllycaconitine (MLA), a specific antagonist of alpha7 nAChR, reversed the inhibition of matrix synthesis and functional calcium signal by nicotine in human growth plate chondrocytes in vitro. To study the effect of nicotine on growth plate in vivo, ovulation-controlled pregnant alpha7 nAChR +/− mice were given drinking water with or without nicotine during pregnancy, and skeletal growth of their fetuses was observed. Maternal nicotine exposure resulted in delayed skeletal growth of alpha7 nAChR +/+ fetuses but not in alpha7 nAChR −/− fetuses, implying that skeletal growth retardation by nicotine is specifically mediated via fetal alpha7 nAChR.

Conclusions/Significance

These results suggest that nicotine, from cigarette smoking, acts directly on growth plate chondrocytes to decrease matrix synthesis, suppress hypertrophic differentiation via alpha7 nAChR, leading to delayed skeletal growth.  相似文献   

18.
19.
The effect of nicotine on the mouse liver mitochondria was studied by fluorescent flow cytometry. Mice consumed nicotine during 65 days; alternatively, nicotine was added to isolated mitochondria. Mitochondria of nicotine-treated mice had significantly lower basic levels of membrane potential and granularity as compared to those of the control group. Pre-incubation of the isolated mitochondria with nicotine prevented from dissipation of their membrane potential stimulated with 0.8 microM CaCl2 depending on the dose, and this effect was strengthened by the antagonist of alpha7 nicotinic receptors (alpha7 nAChR) methyllicaconitine. Mitochondria of mice intravenously injected with the antibodies against alpha7 nAChR demonstrated lower levels of membrane potential. Introduction of nicotine, choline, acetylcholine or synthetic alpha7 nAChR agonist PNU 282987 into the incubation medium inhibited Ca2+ accumulation in mitochondria, although the doses of agonists were too low to activate the alpha7 nAChR ion channel. It is concluded that nicotine consumption worsens the functional state of mitochondria by affecting their membrane potential and granularity, and this effect, at least in part, is mediated by alpha7 nAChR desensitization.  相似文献   

20.
Physiological anti-inflammatory mechanisms can potentially be exploited for the treatment of inflammatory disorders. Here we report that the neurotransmitter acetylcholine inhibits HMGB1 release from human macrophages by signaling through a nicotinic acetylcholine receptor. Nicotine, a selective cholinergic agonist, is more efficient than acetylcholine and inhibits HMGB1 release induced by either endotoxin or tumor necrosis factor-alpha (TNF-alpha). Nicotinic stimulation prevents activation of the NF-kappaB pathway and inhibits HMGB1 secretion through a specific 'nicotinic anti-inflammatory pathway' that requires the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). In vivo, treatment with nicotine attenuates serum HMGB1 levels and improves survival in experimental models of sepsis, even when treatment is started after the onset of the disease. These results reveal acetylcholine as the first known physiological inhibitor of HMGB1 release from human macrophages and suggest that selective nicotinic agonists for the alpha7nAChR might have therapeutic potential for the treatment of sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号