首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p53 was originally considered to be a nuclear oncogene, but several convergent lines of research have indicated that the wild-type gene functions as a tumor suppressor gene negatively regulating the cell cycle. Mutations in the p53 gene have been detected in many tumor types and seem to be the most common genetic alterations in human cancer. In this preliminary study, sera of 92 patients (pts) with breast disease were analyzed for the presence of the mutant p53 protein (mp53) with a selective immunoenzyme assay employing a monoclonal antibody (PAb 240) specific for the majority of mammalian m p53 but not for the wild-type protein. Of the 10 patients with benign breast disease, only two (20%) showed detectable m p53 levels in the serum. In the breast cancer group, sera from 7 of the 30 pts (23%) without lymph node involvement were positive for m p53, as were 7 out of the 45 pts (15%) with metastatic lymph nodes and 1 out of the 7 pts (14%) with disseminated disease. The specifity of m p53 assay evaluated in 20 healthy controls was 100%. These preliminary results showed that serum positivity for m p53 is not related to breast disease extension. Further studies to assess the utility of m p53 as a possible prognosis factor in breast cancer are currently in progress.  相似文献   

2.
Structure of the rat p53 tumor suppressor gene.   总被引:12,自引:1,他引:12       下载免费PDF全文
Aberration within the p53 tumor suppressor gene is the most frequently identified genetic damage in human cancer. Regulatory functions proposed for the p53 protein include modulation of the cell cycle, cellular differentiation, signal transduction, and gene expression. Additionally, the p53 gene product may guard the genome against incorporation of damaged DNA. To facilitate study of its role in carcinogenesis using a common animal model, we determined the structure of the rat p53 gene. We identified 18 splice sites and defined 25 bases of the intervening sequences adjacent to these sites. We also discovered an allelic polymorphism that occurs within intron 5 of the gene. The rat gene approximates the mouse ortholog. It is 12 kb in length with the non-coding exon 1 separated from exon 2 by 6.2 kb of intervening sequence. The location and size of all rat gene introns approximate those of the mouse. Whereas the mouse and human genes each contain 11 exons, the rat p53 gene is composed of only 10. No intervening sequence occurs between the region of the rat gene corresponding to exons 6 and 7 of the mouse and human p53 genes. This implies intron 6 may be functionally insignificant for species in which it is retained. To extrapolate to p53 involvement in human tumorigenesis, we suggest that mutational events within intron 6 may not be of pathological significance unless splicing is hindered.  相似文献   

3.
4.
p53: the ultimate tumor suppressor gene?   总被引:24,自引:0,他引:24  
M Oren 《FASEB journal》1992,6(13):3169-3176
Alterations in the gene encoding the cellular p53 protein are perhaps the most frequent type of genetic lesions in human cancer. At the heart of these alterations is the abrogation of the tumor suppressor activity of the normal p53. In many cases this is achieved through point mutations in p53, which often result in pronounced conformational changes. Such mutant polypeptides, which tend to accumulate to high levels in cancer cells, are believed to exert a dominant negative effect over coexpressed normal p53. Extensive research on p53, especially in the course of the last 3 years, has already provided much insight into the biological and biochemical mechanisms that underlie its capacity to act as a potent tumor suppressor. There are now many indications that p53 may play a central role in the control of cell proliferation, cell survival, and differentiation. Nevertheless, despite the purported importance of p53 for such crucial processes, mice can develop apparently without any defect in the total absence of p53. This raises the possibility that p53 may become critically limiting only when normal growth control is lost.  相似文献   

5.
The p53 tumor suppressor gene is a logical target for cancer therapy. Several therapeutic strategies can be envisioned based upon recent advances concerning structure and function of the p53 protein, its interaction with cellular and viral proteins and its roles in repairing DNA, regulating cell division and promoting apoptosis.  相似文献   

6.
7.
Tumor suppressor genes are implicated in cell cycle progression. Inactivation of these genes predominantly occurs through mutations and/or allelic loss that involves both alleles. With inactivation by multiple mutations in a single gene, cloning of the amplified gene is necessary to determine whether the mutations reside on one or both alleles. Using pyrosequencing, a recently developed approach based on sequencing-by-synthesis, we studied genetic variability in the p53 tumor suppressor gene and could quantify the ratio between the mutated and wild-type amplified fragments. Furthermore, this sequencing technique also allows allelic determination of adjacent mutations with no cloning of amplified fragments.  相似文献   

8.
细胞自噬(autophagy)是一种在进化上高度保守的代谢通路,它发生的分子机制和信号调控途径相当复杂,其中mTOR信号通路和Beclin1复合物发挥了最重要的调控作用,p53也是细胞自噬重要的调节因子。研究发现,p53可通过多种途径调节细胞自噬水平,这主要决定于它的亚细胞定位。在细胞核中,p53可通过多种方式上调细胞自噬;而在细胞质中,p53对细胞自噬具有负性调节作用,可抑制细胞自噬的发生。探究清楚p53与细胞自噬之间的调控关系将有助于人类正确认识由于细胞自噬功能异常所诱导的肿瘤的发生发展过程,从而最终攻克各种肿瘤性疾病。  相似文献   

9.
p53 regulates the expression of the tumor suppressor gene maspin   总被引:20,自引:0,他引:20  
Maspin has been shown to inhibit tumor cell invasion and metastasis in breast tumor cells. Maspin expression was detected in normal breast and prostate epithelial cells, whereas tumor cells exhibited reduced or no expression. However, the regulatory mechanism of maspin expression remains unknown. We report here a rapid and robust induction of maspin expression in prostate cancer cells (LNCaP, DU145, and PC3) and breast tumor cells (MCF7) following wild type p53 expression from an adenovirus p53 expression vector (AdWTp53). p53 activates the maspin promoter by binding directly to the p53 consensus-binding site present in the maspin promoter. DNA-damaging agents and cytotoxic drugs induced endogenous maspin expression in cells containing the wild type p53. Maspin expression was refractory to the DNA-damaging agents in cells containing mutant p53. These results, combined with recent studies of the tumor metastasis suppressor gene KAI1 and plasminogen activator inhibitor 1 (PAI1), define a new category of molecular targets of p53 that have the potential to negatively regulate tumor invasion and/or metastasis.  相似文献   

10.
Chen S  Hong Y  Scherer SJ  Schartl M 《Gene》2001,264(2):197-203
P53 is by far the most frequently altered gene in mammalian tumors. However, so far not a single p53 lesion has been reported in malignancies of cancer model systems in lower vertebrates. For analyzing the function of p53 in lower vertebrates, the gene was cloned from the medakafish (Oryzias latipes). Despite some differences in the genomic organization, the fish p53 amino acid sequence is highly conserved. Contrary to higher vertebrates, the level of p53 mRNA in medaka embryos gradually increases during embryogenesis. High expression of the p53 mRNA was detected in melanoma cells compared to undetectable expression of the gene in embryonic stem cells and fibroblasts. No effect of ultraviolet (UV) irradiation on the expression of p53 in cell cultures as well as in medaka fry was observed, indicating a possible difference in the function of p53 in lower vertebrates.  相似文献   

11.
12.
13.
14.
15.
An enzyme-based solid-state electrochemiluminescence (ECL) sensing platform for sensitive detection of a single point mutation is developed successfully using p53 tumor suppressor gene as a model analyte. A composite of multiwalled carbon nanotubes and Ruthenium (II) tris-(bipyridine) (MWNTs-Ru(bpy)(3)(2+)) was prepared and coated on an electrode surface, which was covered by polypyrrole (PPy) to immobilize ssDNA. Then, the ssDNA recognized the gold nanoparticle (AuNP)-labeled p53 tumor suppressor gene, and produced AuNP-dsDNA electrode with AuNP layer. The surface adsorbed the glucose-dehydrogenase (GDH) molecules for producing ECL signal. This system combined enzyme reaction with ECL detection, and it can recognize sequence-specific wild type p53 sequence (wtp53) and muted type p53 sequence (mtp53) with discrimination of up to 56.3%. The analytic results were sensitive and specific. It holds promise for the diagnosis and management of cancer.  相似文献   

16.
Personalized cancer treatment requires molecular characterization of individual tumor biopsies. These samples are frequently only available in limited quantities hampering genomic analysis. Several whole genome amplification (WGA) protocols have been developed with reported varying representation of genomic regions post amplification. In this study we investigate region dropout using a φ29 polymerase based WGA approach. DNA from 123 lung cancers specimens and corresponding normal tissue were used and evaluated by Sanger sequencing of the p53 exons 5-8. To enable comparative analysis of this scarce material, WGA samples were compared with unamplified material using a pooling strategy of the 123 samples. In addition, a more detailed analysis of exon 7 amplicons were performed followed by extensive cloning and Sanger sequencing. Interestingly, by comparing data from the pooled samples to the individually sequenced exon 7, we demonstrate that mutations are more easily recovered from WGA pools and this was also supported by simulations of different sequencing coverage. Overall this data indicate a limited random loss of genomic regions supporting the use of whole genome amplification for genomic analysis.  相似文献   

17.
A series of in vitro tissue culture studies indicated that the p53 tumor suppressor promotes cellular differentiation, which could explain its role in preventing cancer. Quite surprisingly, however, two new in vivo studies provide genetic evidence that p53 blocks osteoblast differentiation and bone development. These interesting results and their biological and clinical implications are the focus of this comment.  相似文献   

18.
Detection of mutations in disease genes will be a significant application of genomic research. Methods for detecting mutations at the single nucleotide level are required in highly mutated genes such as the tumor suppressor p53. Resequencing of an individual patient's DNA by conventional Sanger methods is impractical, calling for novel methods for sequence analysis. Toward this end, an arrayed primer extension (APEX) method for identifying sequence alterations in primary DNA structure was developed. A two-dimensional array of immobilized primers (DNA chip) was fabricated to scan p53 exon 7 by single bases. Primers were immobilized with 200 microm spacing on a glass support. Oligonucleotide templates of length 72 were used to study individual APEX resequencing reactions. A template-dependent DNA polymerase extension was performed on the chip using fluorescein-labeled dideoxynucleotides (ddNTPs). Labeled primers were evanescently excited and the induced fluorescence was imaged by CCD. The average signal-to-noise ratio (S/N) observed was 30:1. Software was developed to analyze high-density DNA chips for sequence alterations. Deletion, insertion, and substitution mutations were detected. APEX can be used to scan for any mutation (up to two-base insertions) in a known region of DNA by fabricating a DNA chip comprising complementary primers addressing each nucleotide in the wild-type sequence. Since APEX is a parallel method for determining DNA sequence, the time required to assay a region is independent of its length. APEX has a high level of accuracy, is sequence-based, and can be miniaturized to analyze a large DNA region with minimal reagents.  相似文献   

19.
Mutation-based treatments are a new development in genetic medicine, in which the nature of the mutation dictates the therapeutic strategy. Interest has recently focused on diseases caused by premature termination codons (PTCs). Drugs inducing the readthrough of these PTCs restore the production of a full-length protein. In this study, we explored the possibility of using aminoglycoside antibiotics to induce the production of a full-length functional p53 protein from a gene carrying a PTC. We identified a human cancer cell line containing a PTC, for which high levels of readthrough were obtained in the presence of aminoglycosides. Using these cells, we demonstrated that aminoglycoside treatment stabilized the mutant mRNA, which would otherwise have been degraded by non-sense-mediated decay, resulting in the production of a functional full-length p53 protein. Finally, we showed that aminoglycoside treatment decreased the viability of cancer cells specifically in the presence of nonsense-mutated p53 gene. These results open possibilities of developing promising treatments of cancers linked with non-sense mutations in tumor suppressor genes. They show that molecules designed to induce stop-codon readthrough can be used to inhibit tumor growth and offer a rational basis for developing new personalized strategies that could diversify the existing arsenal of cancer therapies.  相似文献   

20.
New approaches to understanding p53 gene tumor mutation spectra   总被引:14,自引:0,他引:14  
The first p53 gene mutation arising in a human tumor was described a decade ago by Baker et al. [S.J. Baker, E.R. Fearon, J.M. Nigro, S.R. Hamilton, A.C. Preisinger, J.M. Jessup, P. van Tuinen, D.H. Ledbetter, D.F. Barker, Y. Nakamura, R. White, B. Vogelstein, Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas, Science 244 (1989) 217–221]. There are now over 10,000 mutations extracted from the published literature in the IARC database of human p53 tumor mutations [P. Hainaut, T. Hernandez, A. Robinson, P. Rodriguez-Tome, T. Flores, M. Hollstein, C.C. Harris, R. Montesano, IARC database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualization tools, Nucleic Acids Res. 26 (1998) 205–213; Version R3, January 1999]. A large and diverse collection of tumor mutations in cancer patients provides important information on the nature of environmental factors or biological processes that are important causes of human gene mutation, since xenobiotic mutagens as well as endogenous mechanisms of genetic change produce characteristic types of patterns in target DNA [J.H. Miller, Mutational specificity in bacteria, Annu. Rev. Genet. 17 (1983) 215–238; T. Lindahl, Instability and decay of the primary structure of DNA, Nature 362 (1993) 709–715; S.P. Hussain, C.C. Harris, Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes, Cancer Res. 58 (1998) 4023–4037; P. Hainaut, M. Hollstein, p53 and human cancer: the first ten thousand mutations, Adv. Cancer Res. 2000]. P53 gene mutations in cancers can be compared to point mutation spectra at the HPRT locus of human lymphocytes from patients or healthy individuals with known exposure histories, and accumulated data indicate that mutation patterns at the two loci share certain general features.

Hypotheses regarding specific cancer risk factors can be tested by comparing p53 tumor mutations typical of a defined patient group against mutations generated experimentally in rodents or in prokaryotic and eukaryotic cells in vitro. Refinements of this approach to hypothesis testing are being explored that employ human p53 sequences introduced artificially into experimental organisms used in laboratory mutagenesis assays. P53-specific laboratory models, combined with DNA microchips designed for high through-put mutation screening promise to unmask information currently hidden in the compilation of human tumor p53 mutations.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号